
Modelling Wave Interaction with Porous Structures
using Boussinesq Equations

Shagun Agarwal, V Sriram, and K Murali

Indian Institute of Technology Madras, Chennai, India
shagun.1994@gmail.com

Abstract. The paper presents a numerical model of the two - dimensional enhanced
Boussinesq equations to simulate wave transformations in the near-shore region. The
finite element based discretization over unstructured mesh with triangular elements
uses mixed linear and quadratic shape functions. The domain integrals are calcu-
lated analytically. The model is extended to study flow through porous structures
using Darcy velocity, with the energy dissipation within the porous medium modelled
through additional laminar and turbulent resistance terms. A single set of empirical
constants gives accurate prediction for various stone sizes and porosity. This paper
reports the model development and its validation using existing experimental studies.
Application of the model is demonstrated by studying the interaction between ship
generated waves in a narrow channel and the porous walls of the channel.
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1 Introduction

Boussinesq type equations are widely used for modelling wave transformations in near shore
region. The increasing use of this equations stem from the fact that it reduces the three
dimensional potential flow problems to a two dimensional problem based on depth-averaged
velocity, thus reducing the computational cost drastically in modelling the large domain
while capturing the important phenomenon. Early formulations based on depth averaged
velocities were linear and limited to shallow water regions. Modifications in [1] extended it
to intermediate water depths. Further non-linear improvements in [2,3] saw practical use in
coastal engineering problems.

Wave interaction with porous structures, like rubble mound breakwater and sea wall,
is an important phenomenon for coastal engineering. Their partially reflecting nature is
favourable in dissipating wave energy. A comprehensive wave model should incorporate
porous structure interaction for practical application. A comparison of different porous flow
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equations was done in [4,5]. Early diffraction around porous breakwater model by [6] was
limited to thin breakwater. A rigorous comparison with experiment results on transmission
and reflection of solitary wave was done in [7]. Some notable Boussinesq models based on
Darcy porous flow equation are [8,9].

This work presents a finite element based numerical model of Boussinesq equation with
mixed spatial interpolation, covering shallow to intermediate water depth regions. Interac-
tion with porous structure is modelled using Darcy velocity along with linear and turbulent
resistance terms. The basic model is validated using experimental results from standard
Berkhoff shoal test. The porous flow model is validated through results on reflection and
transmission coefficients for porous breakwater. A potential application of the model is pre-
sented by studying interaction of ship generated waves in a narrow channel with its partially
reflecting walls.

2 Governing Equations

This work uses enhanced Boussinesq equations as derived in [1], which is valid for slowly
varying bathymetry and incorporates linear dispersion characteristics. They are evaluated
in depth integrated form, with P and Q as depth integrated velocity flux along x and y
Cartesian coordinates axes respectively, η as water surface elevation, h as still water-depth,
d = h+ η as total water-depth, g as acceleration due to gravity and ρ as density of water.

The enhanced Boussinesq terms Ψx and Ψy as defined in [1] involve third order spatial
derivatives of surface elevation. A linear shape function for η estimation in finite element
would not be able to calculate this higher order derivative. Therefore an auxiliary variable
w was introduced in [10] as defined by Eq 1. This work uses these modified Boussinesq
equations as a basis for deriving the flow equation through porous medium.

w =
∂

∂x
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∂η
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Flow in a porous medium of porosity λ is modelled using the Darcy velocity or seepage
velocity. If Pd is the depth integrated Darcy flux, then

Pd = λP =⇒ P =
Pd

λ
(2)

The energy dissipation inside the porous medium is modelled using the laminar and tur-
bulent drag resistance terms, flu and ft|u|u; where fl and ft are the respective coefficients
and are obtained using the empirical relations from [11].

fl = α0
(1− λ)3

λ2
ν

s2
ft = β0

(1− λ)

λ3
1

s
(3a)

where ν is the kinematic viscosity of water, s is the characteristic size of the stone and α0 and
β0 are empirical constant with recommended range of 780 - 1500 and 1.8 - 3.6 respectively.
The final form of the Boussinesq equations for flow through porous medium is given in Eq 4.
This is used for the final finite element formulation. Putting λ = 1 makes fl = 0 and ft = 0
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thus returning them to the original form as in [10].
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with the Boussinesq terms Ψ ′
x and Ψ ′

y given by
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3 Numerical Formulation

The finite element formulation is done using standard Galerkin method. The two-dimensional
computational domain is meshed with irregular triangles. Each triangular element consists
of 6 nodes; 3 vertices and middle points of each side. The variable P and Q are evaluated
on the 6 nodes and interpolated using quadratic shape function φ to handle high order
derivatives in Eq 4. The variables η and w are evaluated on the 3 vertices of each triangle
and interpolated using linear shape function δ. The derivatives of the unknowns are eval-
uated using the Jacobian matrix and standard triangle element. The governing equations
are converted to integral form using δi as trial function for Eq 1 and Eq 4a; and φi as trial
function for Eq 4b and Eq 4c. Certain higher order derivatives are converted to weak form
using Gauss divergence theorem. The integration was carried out analytically over a stan-
dard triangular element and then scaled using the Jacobian. This avoids the approximations
of Gauss quadrature method and involves lesser computation. The discretised weak form of
governing equations is given in Eq 6 using matrix notation. The definition of each matrix
in Eq 6 is excluded from this manuscript.

M2w = fw −Dη (6a)

M2η̇ = CxP + CyQ (6b)
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Fig. 1. Contour plot of Berkhoff shoal bathymetry; measurements along lines (- - -)
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Ṗ , Q̇ and η̇ denote the time derivatives. The time integration is done using explicit 3 point
Adams-Bashforth method. The algebraic equations 6 are of form AX = B. The solution
for the unknown X is obtained using iterative-type GMRES solver using PARALUTION
library [12] with OpenMP based parallel implementation. There are four types of boundary
conditions that are modelled — fully reflection slip wall, fully reflecting no-slip wall, inlet
boundary condition and absorbing layer boundary condition. The Dirichlet type boundary
conditions are implemented using penalty method [13, ch.4] and Neumann type boundary
conditions are applied using iterative method. Finally the absorbing layer boundary condi-
tion is applied using a sponge layer.

4 Numerical Experiments

4.1 Regular Waves Over Berkhoff Shoal

Berkhoff shoal bathymetry is widely used to validate numerical models on surface waves.
The bathymetry is a constant 1 : 50 slope with water depth range of 0.1m to 0.45m. It
consists of an elliptical shoal with the centre at a distance of 5.84m from the shoal toe,
with 4m major and 3 minor axis. The depth contours are aligned at an angle of 200 to the
incident regular waves. The computational domain is of size 36m × 20m with the origin
located at the centre of the ellipse. The analytical expression for this bathymetry can be
found in [14].
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The wave inlet boundary is located at side x = −15m, generating regular waves of period
1s and heigh 0.0464m. The sides y = ±10m are fully reflecting slip walls. A 6m sponge layer
is located at side x = 15m to absorb the waves.

The irregular mesh implementation allows use of variable mesh size. The region between
x = −8m and x = 15m is meshed with mean element area of 0.005m2, and the remaining
space has element area of 0.02m2. The mesh has 97062 elements with 48915 linear nodes and
194891 total nodes. Simulation time step is 0.005s, obtained after time convergence study.
The simulated time is 40s.

The results from this simulation are compared with experimental wave height measure-
ments from [15] in Fig 2. The figure also shows comparison with numerical results obtained
using FUNWAVE 1.0 [16] with similar mesh characteristics. The measurements are made
along the line sections S1-S8, as shown in Fig 1. The model correctly captures the loca-
tion and magnitude of peaks in the wave-height along the line sections, thus validating the
implementation of the numerical model.

4.2 Flow of Solitary Wave through Porous Breakwater

The numerical modelling of flows through porous structures is verified through the study
of interaction of solitary wave with porous breakwater. Solitary waves are non-dispersive in
nature and can keep a constant elevation profile over a long distance of propagation. The
solitary wave profile with wave-height (H) at water depth (h) used in the present study is
given in [17].

η(x, t) = Hsech2[κ(Ct−X0)] κ =

√
3H

4h3
C =

√
g(h+H) (7)

with the depth integrated velocity profile given by

P (x, t) = CHsech2[κ(Ct−X0)] (8)

The governing equations for this model are weakly non linear and hence will not be able to
match the conventional non-linear initial condition for solitary wave. To obtain a constant
profile, the solitary wave is first allowed to propagate for long distance at a constant water
depth. At the beginning of these computations, the wave height and shape keep changing.
But over some distance of propagation the solitary wave achieves a stable shape and is then
used for the study of interaction with porous breakwater. This is similar to te approach
taken in [2].

The computational domain is 10m×2m. A uniform element size of 0.05m and time-step of
0.005s is used for all cases. The breakwater is located in the middle of the domain. Porosity
of the gravel is taken as 50% with drag resistance coefficients α = 1100 and β = 1.50.
Two sizes of irregular gravel are studied with median diameter 1.6cm and 2.0cm. Width of
breakwater are taken as 15cm and 30cm. The water depth is kept constant at 0.1m and
wave heights are in the range of 0.01m to 0.035m.

As shown in Fig 3, the solitary wave on hitting the breakwater splits into two parts, and
is partly reflected and transmitted. The heights of these two waves are non-dimensionalised
using the initial wave height to obtain the reflection and transmission coefficients (ζR, ζT ),
which are used to compare the results with reference studies. Fig 4 shows comparison of
results from present work with numerical and experimental results from [7] (using α = 1100
and β = 0.81) for different gravel sizes and breakwater widths. The present model can
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Fig. 2. Graphs showing comparison with results on wave height along various sections; present work
numerical (—); experimental [15] (•), FUNWAVE 1.0 numerical [16] (- -)

accurately estimate the transmission coefficient for all cases in H/h range of 0.1 to 0.35.
Reflection coefficient is predicted well for low H/h but is over-predicted for higher H/h.
This is possibly because the model is linearly dispersive and with increase in wave-height,
the non-linearity of the solitary wave increases leading to modelling errors. The turbulence
modelling done in the present work is based on depth integrated properties and hence cannot
include the effects of eddies formed along the depth. This is supported by the observation
stated in [17], according to which surface wave models tend to over estimate reflection from
porous structure due to improper turbulence modelling.

4.3 Study of Ship Motion in Narrow Channel

This numerical experiment presents a possible extension of this model. Inland waterways,
in form of river, canals, backwaters and creeks are utilised for freight transport at low cost.
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Fig. 3. Snapshots of surface elevation at different time instants depicting splitting of solitary wave
through the porous breakwater

The long waves generated by the motion of cargo vessels in these narrow channels can cause
damage to the river banks and surrounding region through erosion. There is a need to study
this interaction between ship-generated waves and river-bank along the navigation length.

A river-bank can be simplified as a partially reflecting wall, similar to a porous break-
water. The characteristics of river-bank are tuned using stone size and porosity parameters.
The ship waves are generated using moving pressure field based on the formulation of [18].
This approach can be used to study the interaction over long navigation channels.

The schematic describing numerical setup for a parametric example study is shown in
Fig 5. A narrow channel of width 23m has a porous bank, denoted by lines P1 and P2.
The width of each porous region is 5m. Water depth is 2.5m in the entire region. A slender
vessel of length L = 5m, width B = 1m and draft T = 0.2m, is moved along midline of this
channel at a constant speed corresponding to Frd = 0.7. The moving pressure field with
respect to centre of ship is given by

p(x, y) = p0
[
1− cL(x/L)4

] [
1− cB(y/B)2

]
exp

[
−a(y/B)2

]
(9)

with peak pressure p0 = ρgT , and shape constants a = 16, cb = 2, cl = 16.
The computational domain is 100m×43m. The ship moves along the centre line. There-

fore, to successfully capture the sharp gradient of the moving pressure field, the region
between y = 20m and y = 23m is meshed with mean element area 0.02m2, and the re-
maining region with mean element area 0.08m2. A 5m wide sponge layer is placed at each
boundary. This gives a mesh with 70398 elements, 35570 linear nodes and 141537 total
nodes. Time step is 0.01s.

Wave elevation is measured along a line parallel to the bank at a distance of 1m as
denoted by M1. Porosity and stone size are two parameters that can be adjusted for the
bank. For this study, the stone size is kept constant at 20cm. Three values of porosity,
15%, 30% and 50%, are tested. Fig 6 shows the wave elevation measurement on M1 at
25s for these three porosities. The measured maximum wave height for the three porosities
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Fig. 4. Graphs showing estimated transmission and reflection coefficient for 1D solitary waves
through porous breakwater; Shaded region shows transmission; a) s = 1.6cm b = 15cm; b) s =
1.6cm b = 30cm; c) s = 2.0cm b = 15cm; d) s = 2.0cm b = 30cm; present work (—–); referred
numerical [7] (- -); experimental [7] (•)

values is 0.0934m, 0.0819m and 0.0705m respectively. The wave height measurement and
the wave train in Fig 6 show a reduction in reflection from the bank with increasing porosity
value. The magnitude of wave height can be used to estimate erosion at river bank. Due
to the unstructured mesh formulation, the channel shape is not limited to rectangles. This
approach can be used to study curved channels too.

5 Conclusion

This manuscript presented a numerical model of Boussinesq equations incorporating flow
through porous structures. The version of equations used was capable of simulating waves
transformation process in shallow to intermediate water depths. The model uses porous flow
equations derived based on Darcy velocity with laminar and turbulent drag resistance terms.

The finite element formulation was done using standard Galerkin method. The spatial
interpolation of water elevation and auxiliary variable were done using linear polynomial, and
a quadratic shape function was used for depth integrated velocities. The domain integrals
were calculated analytically for standard triangle and scaled using the Jacobian, which
improves accuracy and efficiency.

The basic wave model was tested using standard Berkhoff shoal experiment. The wave
height was measured along pre-defined lines and compared with the experiment results with
acceptable accuracy.

Numerical formulation of porous flow was validated using interaction of solitary wave
with porous breakwater. The tuning coefficients for laminar and turbulent resistance terms
were obtained by minimising error in transmission and reflection coefficient. The tuned
model was tested for various stone sizes and breakwater widths with constant porosity.
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Fig. 5. Schematic for numerical experiment setup and contour plot of water elevation at 22s for
λ = 0.15
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Fig. 6. Graph shown surface elevation at 25s along M1 for three different porosities

The results of transmission coefficient show good agreement with experiment in every test
case with the same set of empirical constants. Reflection coefficient was found to be over-
estimated with increasing non-linearity of incident wave.

The application of model was demonstrated through study of interaction of ship gener-
ated waves with porous walls in a narrow channel. Porosity of the walls of constant depth
channel was varied and wave train formed by interaction of incident and partially reflected
wave was measured near the wall. The trend of decreasing wave height with increasing wall
porosity was obtained and their values for the specific ship characteristics were presented.

This manuscript reported the development and validation of the new numerical model.
The potential real world application of the model was exhibited for both off-shore and inland
waterways problems.
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