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Abstract

A finite element model for depth integrated form of Boussinesq equations is presented. The equations are solved on an

unstructured triangular mesh using standard Galerkin method with mixed interpolation scheme. The elemental integrals are

calculated analytically and time-stepping is done using Runge-Kutta 4th order method. It is extended to simulate ship-generated

waves using moving pressure fields. The unstructured formulation provides the flexibility of mesh refinement as needed, for

capturing wave transformation or moving pressure field. The model is verified against experimental and numerical results for

wave transformation over the Whalin shoal. The results for moving pressure field are compared against numerical results from

FUNWAVE. Further, a simulation of ship navigating a curved path is presented. Finally, a real-life application and validation

against field measurements is provided for waves generated by a fast ferry moving along a GPS tracked path in Tallinn Bay, Estonia.
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1. Introduction

Coastal and ocean engineering problems involve a wide

range of temporal and spatial scales. These vary from long

tsunami waves to steep deep-water waves to breaking waves in

the surf zone. The objective of modelling the propagation and

transformation of this wide range of waves over large domains

with variable bathymetry has led to the development of two-

dimensional horizontal (2DH) models. They capture the three-

dimensional physics on a two-dimensional scale, thus offer-

ing improved computational efficiency compared to the fully-

resolved three-dimensional models, without a significant loss

in accuracy.

The range of applicability of 2DH models is mainly cate-

gorised based on the non-linearity parameter ϵ = a/h and dis-

persion parameter µ = h/L. Here h is the still-water depth, L is

the characteristic wave-length and a is the wave-amplitude. The
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classic Boussinesq-type equations [1] were developed using

perturbation method in depth-integrated form assuming irrota-

tional flow, weak non-linearity and weak dispersion. Therefore,

these are valid for small amplitude waves in shallow depths

up-to kh ≈ 1, with O(µ2) = O(ϵ) ≪ 1. Here k = 2π/L

is the wave-number. The dispersion characteristics of these

equations were improved using long-wave equation, resulting

in the Madsen and Sørensen’s form [2] and the Beji’s form [3]

of Boussinesq equations. Similarly, the Nwogu’s form [4] im-

proved the dispersion characteristics by evaluating velocity at

a tuned z-level of zα = −0.531h from mean sea-level. These

modified forms are weakly non-linear and weakly dispersive,

with extended validity till intermediate depths up-to kh ≈ 3

for small amplitude waves. By taking O(ϵ) = 1 and retain-

ing the O(µ2) terms, highly non-linear but weakly dispersive

Liu [5] and Wei [6] form of the equations were developed

for modelling steeper waves up-to kh ≈ 3. The highly non-

linear forms have improved shoaling characteristics in the surf

zone. It was reported in [6] that the weakly non-linear forms

result in over-prediction of shoaling as the wave approaches
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Figure 1: a) The natural harbour of Cochin port in India, that is accessed by large vessels through the Arabian sea. b) Satellite image of the highlighted section

obtained from Google Earth located at 9.97° N, 76.25° E, dated August-2015, displaying a section of the Cochin port in Kochi, India. It shows the interaction of

waves generated by two vessels and their combined impact on the shoreline.

the breaking point. However, this was updated in the study

by [7] which investigated various weakly-nonlinear Boussi-

nesq equations in amplitude-velocity and amplitude- volume

flux forms. It concluded that when approaching non-linear

regimes, the amplitude-velocity forms result in over-prediction,

while amplitude-volume flux forms result in marginal under-

prediction of shoaling. Liu’s form of the equations was de-

veloped into a general purpose model COULWAVE [8, 9] us-

ing finite-difference method (FDM). Similarly the Wei’s form

was developed into a widely used FDM-FVM model named

FUNWAVE-TVD [10]. The work in [11] presented a higher

order model by retaining O(µ4) terms and using a linear combi-

nation of velocities at two arbitrary z-levels. This form demon-

strated improved dispersion characteristics till kh ≈ 6, and also

provides vertical distribution of velocity accurate up-to kh ≈ 4.

However, the formulation includes higher than third order spa-

tial derivatives, thus requiring additional boundary conditions

and complex numerical implementation. A comprehensive re-

view of Boussinesq equations is presented in [12], where the

defining physics, and the mathematical and numerical tech-

niques involved in development of the various forms is dis-

cussed. In contrast to the aforementioned forms, the Green-

Naghdi equations [13] are 2DH equations which were devel-

oped using the theory of directed fluid sheets, similar to non-

linear plate theory. The Korteweg-de Vries (KdV) equation

[14] is a nonlinear dispersive single variable reduction of the

classic Boussinesq equations which can be solved analytically

[15, 16, 17]. Other forms of 2DH equations include, multi-

layer methods were developed which divide the water column

into multiple layers and match the pressures and horizontal ve-

locities at the interface [18, 19]. This approach can simulate

steeper waves in deeper water, but with more number of gov-

erning equations due to the use of multiple layers. More re-

cently a wave-current 2DH model derived using weighted resid-

ual method, applicable till deep water was presented in [20],

with further development for arbitrary current profiles in [21].

Apart from wind generated waves, Boussinesq-type equa-

tions can be used for modelling waves generated by moving

vessels. In high traffic regions, the long-period waves generated

by ships can propagate over large distances and impact the sur-

rounding coastline. Further, in areas such as harbours or bays,

ship-generated waves may have a significant impact, especially

if these regions are protected from wind-generated waves due to

the presence of landmasses or breakwaters. Fig. (1) shows one

such example of the natural harbour of Cochin port in south-

ern India. The port is located on an artificial island in the

brackish waters of the local backwaters, and therefore is pro-

tected from the ocean by the surrounding features as shown

in Fig. (1a). Due to this, the waves generated by vessels ap-

proaching the commercial port or the naval port have a heavy

impact on the densely populated coastline. A similar example

of Tallinn Bay in Estonia is discussed in section 4.5, where a

field study was conducted to identify the regions which are sen-

sitive to the long-waves generated by fast moving ferries [22].

Worldwide, such scenarios can be seen in heavy traffic regions

such as approach channels, harbours and inland waterways.

Boussinesq-type models can be used for studying these large

domain problems, with the effect of the moving ship imple-

mented either through moving pressure field or a flux source.

The flux source method was used in [23] for generating the

ship wake in rectangular and trapezoidal channels. The work

in [24] further developed the approach by correcting the errors

in the conservation of mass arising from asymmetric bow and

stern shape. The more commonly used approach of moving

pressure field also was used for studying ship wakes in various

channels using FUNWAVE-TVD [25], COULWAVE [26] and

several other models [27, 28]. Further the non-linearity in in-

teraction between wakes of two vessels was investigated using

FUNWAVE-TVD in [29], with advanced results for breaking

solitons separating ahead of the moving disturbance presented
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in [30]. The generation of solitons ahead of vessels moving

in narrow channels was also studied in [31] using the Green-

Naghdi equations. Simulations in relatively unrestricted do-

main were done using COULWAVE in [32, 33] for studying the

spatial variation of ship-generated waves for high speed vessels

over the uneven bathymetry of Tallinn bay in Estonia. The in-

clusion of porosity as done in [34, 35] for simulating porous

breakwaters can further enhance the functionality.

It should be noted that the majority of simulations of ship-

generated waves in the mentioned literature were done on struc-

tured grids. The versatility of Boussinesq-type equations can

lead to multiple length scales in a simulation of large domain.

These may range from long waves in deeper depths to very short

waves in the shallow depths. Further a shorter length scale may

be required for capturing a vessel’s shape for simulating ship-

generated waves. The mesh size in a structured grid is limited

by the shortest length scale. This may lead to a computationally

inefficient situation, where long waves are being captured by

small mesh size. This large ratio of characteristic wave-length

to mesh size will require a small time-step for computational

stability and hence further reducing the efficiency. Alterna-

tively, an unstructured grid can provide the required flexibility

in mesh sizing and can also capture boundaries with complex

geometries.

The finite-element method (FEM) has been applied on un-

structured grids to solve various forms of the Boussinesq equa-

tions. Initial developments include the work done by [36] which

solved the classic form [1] using linear triangular elements and

the Taylor-Galerkin method. Further FEM models were devel-

oped on extended Boussinesq equations [2, 3, 4] for applica-

tion in intermediate depths. These models often include aux-

iliary governing equations for resolving the third order spa-

tial derivatives in the extended forms. The work in [37] mod-

elled the Nwogu’s form [4] using linear triangular elements,

two auxiliary equations for the higher order terms and a adap-

tive time-stepping procedure based on backward-differentiation

method. They reported presence of high-frequency oscillations

in the results which are smoothed using a tuned fourth-order

viscous term in the free-surface equation. The work in [38]

solved the Beji’s form [3] using linear rectangular elements,

used the gradient of surface-elevation as the auxiliary variable

and employed a high-order predictor-corrector time-marching

algorithm. This work too reports high-frequency oscillations in

the results, especially in the beginning of a wave-train, which

are treated using a time-ramping approach. The numerical os-

cillations in these models are likely due to the use of equal-order

shape function for surface-elevation and velocities, as argued in

[39]. Therefore, the model in [39] employs a mixed formu-

lation with linear elements for surface-elevation and quadratic

element for the velocities. This model uses a single auxiliary

equation for the second derivation of surface-elevation and uses

an explicit three-step time-stepping method for efficient com-

putation. The work in [40] avoided use of auxiliary variable by

using a cubic weight function and a linear shape function in a

Petrov-Galerkin FEM formulation for 1D Nwogu’s form of the

equations. However, the procedure was found to be difficult to

reproduce in 2D. Therefore, their two-dimensional FEM model

for Nwogu’s form in [41] used a Galerkin formulation with lin-

ear triangular elements, predictor-corrector time-stepping and

employed two auxiliary governing equations with emphasis on

the treatment of no-flux boundary. Alternatively, the discontin-

uous Galerkin FEM (DG-FEM) scheme has also been applied

for solving Boussinesq equations on unstructured grids. This

scheme does not require the solution to be continuous across

element boundaries. Therefore, it is especially useful in Boussi-

nesq equations involving high order derivatives. Similar to the

finite-volume methods, this scheme requires additional calcula-

tion of inter-element flux. The work in [42] models the weakly

non-linear Madsen form [43] using the DG-FEM scheme us-

ing a slope limiter scheme for inter-element flux calculation.

The model in [44] solves the fully non-linear Madsen form [45]

using DG-FEM and employs the Lax-Friedrich scheme for the

inter-element fluxes.

There is a lack of numerical results from unstructured

FEM models for ship-generated waves, especially given their

strength in capturing multiple length scales. The paper presents

a finite-element model for Madsen and Sørensen’s form of

Boussinesq equation [43], with emphasis on simulating wave

generated by moving vessels. We follow the mixed formulation

approach of [39] and use the standard Galerkin method with

mixed linear and quadratic shape functions. Further, instead of

using the standard Gaussian quadrature method, we calculate

the elemental integrals analytically. Unlike the Taylor-Galerkin

approach in [39], we use the Runge-Kutta 4th order time-

stepping method and evaluate the two momentum equations

together. This avoid the requirement of iterating the solution

for achieving convergence. We implement the moving pressure

field approach for simulating ship-generated waves and further

validate this through field results. The paper briefly presents the

governing equations in section 2, followed by the development

details of this finite element model named FEBOUSS in section

3. The following sections present various numerical results pre-

senting the validation and application of the model. Section 4.2

presents validation against experimental and numerical results

for combined wave refraction and diffraction over the Whalin

shoal [46]. The results for waves generated by ship moving

along a straight line are compared against numerical results

from FUNWAVE-TVD in section 4.3. We further simulate a

ship navigating a curved channel to identify the simulation re-

quirements for the curved path of a moving pressure field in

section 4.4. Building upon these results, the final section 4.5

presents a real-life application and validation against field mea-

surements for waves generated by a fast ferry moving along a

GPS tracked path in Tallinn Bay, Estonia.

2. Governing Equations

This work uses Madsen and Sørensen’s depth integrated form

of Boussinesq equation for slowly varying bathymetry pre-

sented in [43]. Assuming incompressible, inviscid and irrota-

tional flow, the equations are first derived using perturbation

method in [1], with improvements in dispersion characteristics

presented in [2]. It was shown to have excellent agreement for

Page 3 of 28

https://doi.org/10.1016/j.oceaneng.2022.112202


Published version doi:10.1016/j.oceaneng.2022.112202 Accepted manuscript, Ocean Engineering

shoaling coefficient and phase celerity for waves till interme-

diate depth region kh ≈ 3 in [43], thus enabling its applica-

tion in near-shore regions where the effects of sea-bottom are

present.The continuity equation and the depth integrated X and

Y momentum equation are given as follows:

∂η

∂t
+
∂P

∂x
+
∂Q

∂y
= 0, (1a)

∂P

∂t
+
∂

∂x

(

P2

d

)

+
∂

∂y

(

PQ

d

)

+ gd
∂η

∂x

+ Ψ1 +
τ1

ρ
+

d

ρ

∂Π

∂x
= 0,

(1b)

∂Q

∂t
+
∂

∂x

(

PQ

d

)

+
∂

∂y

(

Q2

d

)

+ gd
∂η

∂y

+ Ψ2 +
τ2

ρ
+

d

ρ

∂Π

∂y
= 0.

(1c)

Here g is the acceleration due to gravity, ρ is the density of

water, η is the instantaneous free surface elevation, h is the still-

water depth, d = h+η is the instantaneous total water depth and

P and Q are depth integrated velocities along the X and Y axes

respectively, i.e., P =
∫ η

−h
u dz. The values P and Q may also be

referred to as volume-flux [7]. The additional Boussinesq terms

Ψ1 and Ψ2 are responsible for the dispersion characteristics of

the model and have the following forms:

Ψ1 = −
(

B +
1

3

)

h2(Pxxt + Qxyt

)

− hhx

(1

3
Pxt +

1

6
Qyt

)

− 1

6
hhyQxt − Bgh3(ηxxx + ηxyy

)

− Bgh2hx

(

2ηxx + ηyy

)

− Bgh2hyηxy,

(2a)

Ψ2 = −
(

B +
1

3

)

h2(Pxyt + Qyyt

)

− hhy

(1

6
Pxt +

1

3
Qyt

)

− 1

6
hhxPyt − Bgh3(ηxxy + ηyyy

)

− Bgh2hy

(

ηxx + 2ηyy

)

− Bgh2hxηxy.

(2b)

Here the subscripts denote partial derivatives, i.e., Pxxt =
∂
∂t

(

∂
∂x

(

∂P
∂x

))

. The terms (τ1, τ2) in Eqs. (1b) and (1c) correspond

to the shear stress arising from the boundary layer along the

bottom boundary. They are estimated using quadratic friction

law as follows [47]:

(τ1, τ2) = ρCb

√

P2 + Q2

d2
(P,Q), (3)

where Cb is the bottom drag coefficient based on Manning co-

efficient. The final terms in Eqs. (1b) and (1c) are gradient of

surface pressure Π. They are used for implementing a moving

pressure field to simulate ship-generated waves. This procedure

is discussed in detail in the following sections.

The governing equation in this form involves up to 3rd-order

spatial derivatives of surface elevation. A high order poly-

nomial shape function would be needed for η to model those

terms. In order to eliminate these terms [39] introduced an aux-

iliary variable ω as

ω =
∂

∂x

(

h
∂η

∂x

)

+
∂

∂y

(

h
∂η

∂y

)

. (4)

Therefore, the auxiliary variable equation is a part of the gov-

erning equations along with the conservation of mass and mo-

mentum. The corresponding Boussinesq terms become:

Ψ1 = −
(

B +
1

3

)

h2(Px2t + Qxyt

)

− hhx

(1

3
Pxt +

1

6
Qyt

)

− 1

6
hhyQxt − Bgh2ωx,

(5a)

Ψ2 = − (B +
1

3
)h2(Pxyt + Qy2t

)

− hhy

(1

6
Pxt +

1

3
Qyt

)

− 1

6
hhxPyt − Bgh2ωy.

(5b)

Here B is the free parameter for tuning the dispersion charac-

teristics. Through comparisons of wave celerity against Stokes

first order theory, the value of B = 1/15 was found to have less

than 5% error till intermediate water kh ≈ 3 in [2], with further

validations in [43] using linear shoaling analysis.

The present work does not include additional terms corre-

sponding to wave breaking and eddy-viscosity based turbulence

as the analysis is limited to non-breaking cases.

2.1. Moving pressure field

Models based on Boussinesq equations have been used for

simulating waves generated by moving vessels. However, with

the depth dimension either integrated or averaged in these mod-

els, it would not be possible to simulate near-vessel flow. There-

fore, the effect of a vessel moving through the waters is imple-

mented in Boussinesq equations either by approximating near-

vessel flow using slender-body theory [23, 24]; or by adding

pressure source terms to the conservation of momentum equa-

tions [27, 28, 31].

The slender-body approach calculates the flux generated in

the direction perpendicular to the motion of the vessel using

the variation of it’s transverse section area. This transverse sec-

tion area can be estimated analytically [24], but can also be

calculated numerically for any vessel shape. Changing the di-

rection of motion of a vessel may lead to complications because

it would need calculation of transverse and longitudinal section

area. Additional modifications would be needed to avoid errors

in conservation of mass arising from the difference in flux gen-

erated by the bow and stern regions, as discussed in [24]. Given

that the approach relies on the gradient of sectional area, a tran-

som stern will be difficult to achieve due to the abrupt gradient.

The present work uses moving pressure field to generate

the waves from moving vessels. A surface pressure term Π

is added to momentum equations as shown in Eq. (1). Here

Π(x, y, t) = ρgD(x, y, t) is defined as hydrostatic pressure due to

the local draft D(x, y, t) of the vessel at time t. The shape of the

vessel can be given either through analytical forms or through

discrete points. However, structures, which are submerged or

are flaring inwards, cannot be included in this approach. This
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Figure 2: Schematic showing the point cloud over the vessel’s pressure field, which is used for estimating the wave-making forces on the vessel using moving least

squares method.

approach can neither model a transom stern due to the sharp

gradient of hydrostatic pressure. Consider a ship with length

Ls, beam Bs, draft Ds, centre (xs(t), ys(t)) and heading θs(t) with

respect to positive X-axis at time t. In the existing literature on

wave generated by moving pressure field in Boussinesq models,

the draft function D(x, y, t) is often prescribed using one of two

analytical expressions. The first expression as defined in [31] is

given as follows:

D(x, y, t) = Ds f (x′)g(y′), (6a)

f (x′) =



























cos2
[

π
(

x′−0.5α1

1−α1

)]

0.5α1 < x′ ≤ 0.5

cos2
[

π
(

x′+0.5α2

α2−1

)]

−0.5 ≤ x′ < −0.5α2

1 −0.5α2 ≤ x′ ≤ 0.5α1

(6b)

g(y′) =



























cos2
[

π
(

y′−0.5β1

1−β1

)]

0.5β1 < x′ ≤ 0.5

cos2
[

π
(

y′+0.5β1

β1−1

)]

−0.5 ≤ x′ < −0.5β1

1 −0.5β1 ≤ x′ ≤ 0.5β1

(6c)

where

(

x′

y′

)

=

[ 1
Ls

0

0 1
Bs

] [

cos(θs(t)) sin(θs(t))

− sin(θs(t)) cos(θs(t))

] (

x − xs(t)

y − ys(t)

)

.

(7)

There are 3 controlling coefficients; α1, α2 ∈ [0, 1] for shaping

the bow and stern parts, and β1 ∈ [0, 1] for the transverse cross-

section. This expression allows for both slender and bulky pres-

sure fields. The second expression as defined in [27, 28] is given

as follows:

D(x, y, t) = Ds

[

1 − α1(x′)4
] [

1 − β1(y′)2
]

exp
[

−β2(y′)2
]

,

−0.5 ≤ x′ ≤ 0.5,−0.5 ≤ y′ ≤ 0.5
(8)

It results in a slender ship with only the keel at maximum draft.

The coefficient α1 in Eq. (8) controls the longitudinal shape,

while β1 and β2 shape the transverse cross-section. However,

with typical values of α1 = 16 and β1 = 4, this expression offers

limited control over the pressure field’s shape. The coefficients

in both of these expressions are used to modify the shape of the

pressure field to match the physical loaded displacement of the

ship.

The vessel is moved simply by moving the centre of the pres-

sure field (xs(t), ys(t)) and changing the heading θs(t) over time

as required. Therefore, it can perform oblique or rotatory mo-

tions. In order to follow an arbitrary path, the position and head-

ing should be given by the user at multiple time-instances. The

actual path at simulation time-step is interpolated between user

specified positions using cubic spline method. The significance

of this is briefly discussed in section 4.4. Further, we can sim-

ulate multiple vessels by adding the pressure term due to each

vessel to the governing equation.

3. Numerical Formulation

The system of governing equations, with the auxiliary vari-

able given by Eq. (4), continuity and momentum equation by

Eq. (1), are solved in space using finite element method. The

problem domain Ω, with the boundary Γ, is divided into non-

overlapping irregular triangles, thus generating an unstructured

mesh. This allows for capturing of complex boundaries. We

use the standard Galerkin method, where the same polynomial

is used as basis and test functions. Given the presence of up-

to second order spatial derivatives for η, P and Q, a minimum

of C0 continuous basis function will be needed with the use of

integration by parts. However, as argued in [39], use of equal

order basis functions for velocities and surface elevation will

lead to spurious oscillations. Therefore a mixed formulation is

used, with the stable form for triangular element as suggested

in [48]. The variables η and ω are evaluated at the 3 vertices of

the triangle using linear basis function ψ. The variables P and Q

are evaluated at the 3 vertices and the 3 edge-centres of the tri-

angle, using the quadratic basis function ϕ. Hence collectively

throughout the domain, there will be Nl nodes where η and ω

are evaluated, and Nq nodes where P and Q are evaluated. The

values of the unknowns within a triangular element are given in

the following forms.

P(x, y) =

6
∑

i=1

ϕiPi, Q(x, y) =

6
∑

i=1

ϕiQi. (9a)

η(x, y) =

3
∑

i=1

ψiηi, ω(x, y) =

3
∑

i=1

ψiωi. (9b)

The weak form of the governing equations is obtained by

multiplying Eq. (4) and Eq. (1a) with ψ, and multiplying
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Eq. (1b) and Eq. (1c) with ϕ, and then integrating over the el-

ement. The integration is carried out by parts when necessary,

resulting in boundary integrals and reduction of the order of the

derivatives. The derivatives inside an element are evaluated us-

ing Jacobian and coordinate transformation to master element.

Instead of using the traditional numerical approach of Gauss

quadrature for evaluating the elemental integrals, we calculate

the integrated expression analytically using symbolic maths in

Mathematica [49] and code it directly into the program. This

will reduce the computational effort, especially for large do-

mains. The procedure is described in detail in Appendix A.

The time marching in this model is done using the classic

Runge-Kutta 4th order scheme (RK4), with a prescribed con-

stant time-step. Therefore, the system would have to be solved

4 times per time-step, making it computationally expensive

compared to explicit approaches such as Adam-Bashforth 3rd

order scheme. However, it’s low local truncation error of O(∆t5)

allows for larger time-step and lower accumulation of error over

long simulation duration. With the use of RK4, the algebraic

system of time derivatives η̇, Ṗ and Q̇ is formed as presented in

Eq. (10).

[

M2

]

ω =
[

D
]

η, (10a)

[

M2

]

η̇ =
[

Cx

]

P +
[

Cy

]

Q −
[

χM2

]

η, (10b)

[

M1 + B1 B2

B3 M1 + B4

] (

Ṗ

Q̇

)

=

[

N 0

0 N

] (

P

Q

)

+

[

Gx

Gy

]

η +

[

B5

B6

]

ω

+

[

Ex

Ey

]

Π −
[

χM1 0

0 χM1

] (

P

Q

)

.

(10c)

The system is solved in the sequence as shown in Eq. (10) dur-

ing each step of RK4. The matrices on the LHS are the global

stiffness matrix for each system. For ω and η̇, the stiffness

matrix [M2] is square with a size of (Nl × Nl). Ṗ and Q̇ are

solved together due to their interdependence, making their stiff-

ness matrix of size (2Nq × 2Nq). The expressions on RHS are

written in global matrix form for fast computation. Few of the

matrices on the RHS are constant and are evaluated once at the

beginning of the simulation. These are multiplied with the dy-

namic values of the unknowns to obtain the RHS of the system

of linear equations. Expressions for all matrices are included in

Appendix B.

The constant time-step for the simulation is prescribed based

on Courant number condition

Cou = max{∆t

∆r

√

gh}. (11)

Usually Cou ≤ 1 is a sufficient condition for a stable simu-

lation. Here h and ∆r are the local water-depth and charac-

teristic mesh dimension respectively. The dispersion error for

this mixed linear-quadratic scheme is reported in Appendix C,

similar to the analysis for various schemes conducted in [50].

All of the matrices in Eq. (10) are sparse, and are stored us-

ing compressed sparse row (CSR) technique, which converts

the two-dimensional matrix into two one dimensional matrix

with information of only the non-zero values. This drastically

reduces storage requirement and improves access speed. The

system of linear equations can be solved using direct methods,

such as Gaussian elimination. However, the numerical imple-

mentation of these methods require significantly high memory

and computation, making them viable only for small problems.

Alternatively, iterative methods such as the bi-conjugate gradi-

ent stabilised method (BiCGStab) employed in this work, allow

for efficient solution of large-domain problems. However, the

iterative solvers require a terminating criterion, which is speci-

fied as absolute tolerance of 10−4 for the presented system based

on numerical tests.

3.1. Boundary Conditions

Three boundary conditions (BC) have been implemented in

the current model, including inlet, wall and absorbing bound-

aries. The inlet is implemented using Dirichlet BC, where val-

ues of P, Q and η at inlet boundary nodes are either given using

analytical theories such as Airy wave theory and Stokes 2nd or-

der theory, or evaluated using Fourier series solution for the

Boussinesq equations at constant depth as presented in [51].

Alternatively, we can also provide input from a fully-nonlinear

potential theory (FNPT) model. The wall boundary condition

is implemented using Pn = Pnx + Qny = 0 for slip-wall, where

(nx, ny) is outward unit normal, and P = 0, Q = 0 for no-slip

wall. The absorbing boundary is implemented using a sponge

layer based on Newtonian cooling [52]. It is applied to conti-

nuity and momentum equations, with additional −χη, −χP and

−χQ terms on the RHS of the respective governing equations,

Eq. (10b-10c). Here χ is a ramping function defined as

χ(x) =
30

Ta

exp( x−xa

La
)2 − 1

exp(1) − 1
, 0 < (x − xa) < La, (12)

where Ta is time period of wave to be absorbed, La is the length

of the sponge layer and xa represents the coordinate for the be-

ginning of the sponge layer. This expression is modified appro-

priately for sponge layer along other directions. The use of this

ramping function along with proper length of the sponge layer

is crucial for minimising reflection of the wave from the sponge

layer.

3.2. Wave-making force on pressure field

Wave-making forces on the moving pressure field in Boussi-

nesq model were estimated in the work of [31] by using hydro-

static pressure and gradient of surface elevation as

(Fx, Fy) =

∫∫

Ωs

ρgD

(

∂η

∂x
,
∂η

∂y

)

dx dy. (13)

In the present work, a regularly spaced point cloud, as shown

in Fig. (2), is attached to the rectangular region of the moving
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Figure 3: Surface-elevation plot of solitary wave at t = 29t0 obtained by FEBOUSS simulation using ∆x = 0.05h mesh-resolution compared against solution to

Eq. (15) as the reference. a) Zoomed-out view, b) Zoomed-in of the peak.
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Figure 4: Plot of L2 norm of error in surface-elevation profile for various mesh

resolutions. The dashed line has a slope of 2.01, indicating a nearly quadratic

rate of convergence.

pressure field. The values of hydrostatic pressure and ∇η are

evaluated at these points. This allows for accurate calculation

of Eq. (13) for multiple pressure fields while they move along

arbitrary paths.

Due to the C0 continuous η across FEM elements, ∇η ob-

tained from FEM shape function at the nodes of the point-cloud

will be discontinuous across each element. Therefore, we in-

stead use the moving least squares method (MLS) [53] to obtain

continuous ∇η at the nodes of the point-cloud. Finally, due to

the regular distribution of the nodes in the point-cloud, the area

integral in Eq. (13) is conveniently calculated uses Simpson’s

rule.

Viscous and wave-making forces are two major components

of the resistance for a vessel moving in calm water. For vessels

moving in shallow water, both of these forces are increased due

to the faster motion of water under the vessel, and higher am-

plitudes of the generated waves. An accurate numerical calcu-

lation of these forces would require intensive three-dimensional

viscous flow simulations. We would like to acknowledge that

the wave-making resistance obtained from Eq. (13) is only in-

dicative. Additionally, this derived quantity can be used for

monitoring the flow and simulation convergence in the vicinity

of the pressure field. The obtained forces may indicate the trend

of wave-making resistance while the pressure field moves over

variable bathymetry and is explored in section 4.5. However,

the correlation between this estimation and actual wave-making

resistance is beyond the scope of this manuscript.

4. Numerical Results

The section presents convergence analysis, validation and

numerical results for this unstructured finite element model for

Boussinesq equation (FEBOUSS). The mesh convergence is

studied using solitary wave propagation and the standard test

case of Whalin shoal [46]. Further results are presented for

waves generated by moving pressure fields.

4.1. Solitary wave propagation and mesh convergence

Consider a solitary wave of amplitude A in a one-dimensional

domain with constant still-water depth h. The solitary wave will

have a self-similar solution, i.e,

η(x, t) = η(ξ) P(x, t) = P(ξ) where ξ = x −Ct (14)

Here, C is the celerity of the solitary wave. Further, assuming

that the solution and all its derivatives tend to zero as ξ → ±∞,

the one-dimensional form of the Boussinesq equations Eq. (1)

can be reduced to a second-order ordinary differential equation

for P, given by

∂2P

∂ξ2

(

Bgh3

C
−Ch2

(

B +
1

3

))

=

(

gh −C2

C

)

P +

(

g

2C2

)

P2 +
CP2

Ch + P

where, C2 =
ghA2(A + 3h)

6h2(A − h ln
(

1 + A
h

)

)

(15)
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The surface-elevation is obtained by η(ξ) = P(ξ)/C. The

derivation of this procedure is described in [54]. This ordinary

differential equation can be numerically solved, with boundary

condition P(0) = CA and ∂
∂ξ

P(0) = 0, to obtain a relatively ’ex-

act’ solution for the solitary wave. This solution is provided as

the initial condition in FEBOUSS to simulate solitary waves.

A mesh convergence analysis was conducted using a solitary

wave with A/h = 0.2 in water depth h = 1m. The resultant

celerity from Eq. (15) is C = 3.4407m/sec. The length scale is

non-dimensionalised using h and the time-scale using t0 =
h
C

.

Each simulation was done on a rectangular numerical domain

consisting of regularly spaced nodes, with ∆x = ∆y, length

300h spanning between x ∈ [−100h, 200h] and width 10∆x.

The slip-wall condition is applied at all four boundaries. Tests

were conducted for ∆x ∈ {0.40h, 0.20h, 0.10h, 0.05h}. The

Courant number for each simulation was fixed at Cou = 0.43,

resulting in time-step ∆t/t0 = 0.43∆x
h

. The initial condition was

specified using the solution to Eq. (15), with the peak located at

x = 0h at t = 0t0.

The solitary wave profile obtained from FEBOUSS at t =

29t0 after about 100h distance of propagation is compared with

the solution to Eq. (15) as the reference. Fig. (3) presents

a nearly overlapping comparison of the surface elevation ob-

tained using ∆x = 0.05h against the reference. The mesh reso-

lution will impact the profile and celerity of the solitary wave.

At t = 29t0, we quantify the error using the L2 norm of rel-

ative difference between the simulated ηF and reference ηre f

profiles, Err =
ηF−ηre f

A
. Fig. (4) presents the plot of the error

against the mesh-resolution. The slope of this plot indicates the

rate of convergence of the model. The dashed line in Fig. (4)

has a slope of 2.01, indicating an overall quadratic rate of con-

vergence. This analysis thus validates the convergence and ac-

curacy of the FEBOUSS simulation for the basic test case of

solitary wave propagation.

4.2. Regular waves over Whalin shoal

An experimental investigation for combined refraction

diffraction was carried out by [46]. They used a shoaling

bathymetry with parallel circular contours, which were sym-

metric about the centreline of the rectangular basin. The tri-

als were limited to non-breaking cases, and the wave genera-

tion at the beginning of the basin was linear. Therefore, these

experiments present a good test case for investigation of non-

linear refraction and diffraction modelled by this FEM model

FEBOUSS. The bathymetry setup for the experiments is given

by

h(x, y) =


























0.4572 0 ≤ x ≤ 10.67 −G

0.4572 + 1
25

(10.67 −G − x) 10.67 −G ≤ x ≤ 18.29 −G

0.1524 18.29 −G ≤ x ≤ 36.576

(16a)

G(y) =
√

(y(6.096 − y)) 0 ≤ y ≤ 6.096, (16b)

with maximum and minimum depth of h1 = 0.4572m and

h2 = 0.1524m respectively. A contour plot for this bathymetry

is shown in Fig. (5a). In the original work [46], a number of

experiments were conducted on the same bathymetry for var-

ious wave periods, 1s, 2s and 3s, with the waves generated at

the deeper end of h1 = 0.4572m. We have presented results

for two cases, case-1 with T = 1s, H = 0.039m, kh1 = 1.92;

and case-2 with T = 2s, H = 0.015m, kh1 = 0.73. Numerical

tests for these experiments were also carried out by [43] using a

FDM model, and [39] using a FEM model for similar governing

equations.

We first present the results for case-2 with T = 2s. The do-

main is rectangular with dimensions 36.576m × 6.096m. For

these tests a regular mesh consisting of right-angled isosceles

triangles with sides ∆x = ∆y is considered. The waves are gen-

erated on the left boundary using analytical expression from

Stokes 2nd order theory. A sponge layer of length La = 6.576m,

starting at xa = 30m is placed on the right boundary. The re-

maining boundaries are slip walls. With this setup the simula-

tion soon reaches a steady state.

We conduct a self-convergence study for the model using

mesh setups shown in Table (1). Here L1 = 3.909m and

L2 = 2.382m are the wave-lengths obtained from linear dis-

persion relationship for the T = 2s wave at the deepest and the

shallowest depths of h1 = 0.4572m and h2 = 0.1524m respec-

tively. As per the recommendations in [2], 8−10 grid points are

sufficient to capture a regular wave. This is taken as the coarsest

setup M1 in our study. The Courant number defined by Eq. (11)

is kept around Cou = 0.85 for all setups. The resultant wave el-

evation obtained using various mesh setups along the domain’s

centreline at y = 3.048m is shown in Fig. (6). It presents vi-

sual representation of the mesh convergence through the over-

lapping results of M5 and M6. The self-convergence is further

quantified using error parameter Pd =
√

∑

(η − ηre f )2/
∑

(ηre f )2

[55], where Pd → 0 indicates perfect agreement between the

two signals. We compare the results from M1-M5 against the

reference setup M6 using Pd in Fig. (8a). We observe limited

change in results beyond M4 setup.

We also investigate the time-step convergence for this model.

The setup M3 with spacing 0.2032m was simulated with time-

steps ∆t = [0.08, 0.05, 0.04, 0.03125, 0.025] corresponding to

T/∆t = [25, 40, 50, 64, 80] respectively, covering Courant num-

ber range from 0.26−0.84. We placed three wave-probes along

the domain’s centreline at y = 3.048m; WP1 in the region of

wave-generation at x = 5m, WP2 in the middle of the shoal

at x = 12m, and WP3 in the post shoaling wave-peak region

at x = 20m. Fig. (7) presents the wave-elevation time-series

at WP3 (x, y) = (20, 3.048)m for various time-steps. We ob-

served limited difference in results for time-steps smaller that

T/40. The error parameter Pd is evaluated for wave-elevation

time series for various time-steps. Here the time-series from the

smallest time-step ∆t = T/80 is taken as the reference. Fig. (8b)

shows the plot of error Pd at each of the three wave-probe lo-

cations. The value of Pd is close to zero for all test cases, how-

ever we can still observe a significant reduction in Pd for the

wave probe at x = 20m. This is likely due to the introduc-

tion of higher harmonics in this region, which will be discussed

further in this section. From these analyses we can observe

the mesh and time-step convergence for this FEM model of the
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Figure 5: a) Contour plot showing the bathymetry for Whalin shoal [46] test cases. The dashed line depicts the domain’s centreline at y = 3.048m, along which

measurements are reported in Fig. (6,9,10,11). b) Numerical result for contour of wave elevation at t = 40s for case-2.

Table 1: Details of the simulation setups for the convergence study for regular wave of T = 2s, H = 0.015m transforming over Whalin shoal’s bathymetry. Here

the Courant number is kept within 0.83 − 0.87 for all setups.

Setup ∆x = ∆y L1/∆x L2/∆x ∆t T/∆t Courant Number of

(m) (s) elements

M1 0.3048 12.83 7.82 0.125 16 0.87 4,800

M2 0.2540 15.40 9.38 0.10 20 0.83 6,912

M3 0.2032 19.24 11.73 0.08 25 0.83 10,800

M4 0.1524 25.65 15.63 0.0625 32 0.87 19,200

M5 0.1016 38.48 23.45 0.04 50 0.83 43,200

M6 0.0762 51.30 31.27 0.03125 64 0.87 76,800

Figure 6: Wave elevation along the domain centreline y = 3.048m at t = 40s for case-2 obtained using mesh setups M1, M3, M5, M6 from Table (1). a) Zoomed

out view from wave generation to wave transformation. b) Zoomed in view near the peak elevation region. Please note the legend is common for plots a) and b).
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Boussinesq equations. For this particular test case, a mesh size

of L/16, where L is the shortest wave-length, and time-step of

T/40 is a sufficient resolution. However these guidelines will

vary depending on the steepness of the waves.

The converged results obtained using the setup M5 will be

used for further analysis. It corresponds to 43200 triangular el-

ements with 22021 and 87241 nodes for linear and quadratic

interpolation respectively. The contour plot of wave-elevation

in Fig. (5b) shows the regular waves transform over the shoal

and refracting towards the centreline. The wave-elevation along

the centreline shows good agreement against previous numeri-

cal results from [39] in Fig. (9). Due to the non-linear wave

transformation over the shoal, energy gets transferred to higher

harmonics. This is observed through Fig. (10b) showing non-

zero amplitude around 0.5Hz, 1.0Hz, 1.5Hz corresponding to

first, second and third harmonics. The experiments by [46] had

measured amplitudes of the first, second and third harmonics.

A comparison between these amplitudes from experimental re-

sults of [46], numerical results of Taylor-Galerkin FEM model

in [39], numerical results of DG-FEM model in [44] and our

simulations is shown in Fig. (10a). When compared with [39],

our model provides comparable results for the same mesh size

with 4 times the time-step. This is due to the RK4 time-stepping

and also because we solve the interdependent governing equa-

tions for P and Q together, as shown in Eq. (10c), instead of the

iteration procedure used by [39].

The second test was conducted for case-1 with T = 1s. For

this case we obtained converged results for the same domain

with mesh size of 0.0508m and time-step ∆t = 0.02s. This

shorter and steeper wave after transformation shows transfer

of energy mainly to the second harmonic. This is seen in the

non-zero amplitudes for 1.0Hz and 2.0Hz corresponding to the

first and the second harmonics in Fig. (11b). The amplitudes of

first and second harmonic along the centreline are compared

in Fig. (11a) against the experiments, the FDM results with

B = 1/15 from [43] and the hybrid FDM-FVM model from

[56]. Our results also include the amplitude for the third har-

monic. The FDM results have oscillations in the amplitude of

the second harmonic, but the same was not observed in our re-

sults. Although the experiments have considerable scatter for

this case even before the shoaling event, our results show good

agreement for the first harmonics and slight under-estimation

for the second harmonic amplitudes.

We have also investigation mass conservation properties of

the FEM model. A control volume is taken between x =

6.096m and x = 29.464m, which is bound by the walls along

the Y-axis, and the bathymetry and the free surface along the

Z-axis. The error in conservation of mass within this control

volume is given by E = d
dt

(∫

CV
ρ dV

)

+
∫

CS
ρ(⃗vr .⃗n) dS [57,

Eq. (3.20)]. Here CV and CS are the control volume and the

corresponding control surface, n⃗ is outward unit normal for the

control surface and v⃗r is the relative velocity between the fluid

and the control surface. The error is non-dimensionalised us-

ing mass flux under the wave crest during wave-generation End,

which is calculated analytically from Stokes 2nd order theory.

This represents the conservation error with respect to the wave

input into the control volume. This error is calculated at each

time-step during the simulation and is reported for both case-1

and case-2 in Fig. (12). We observe that for both cases, the er-

ror in mass conservation over the entire computational domain

is within 5% of the wave crest’s mass flux throughout the sim-

ulation period. However higher error is observed in the steeper

case-1 due to the weakly non-linear nature of the Boussinesq

equation. Through these numerical results we have demon-

strated the performance of FEBOUSS for combined non-linear

refraction diffraction problems against other models for similar

equations and against experiments.

4.3. Waves generated by moving pressure field

In this section we present results for waves generated by a

pressure field moving in straight line. When floating bodies

move in calm water, the generated wake is referred to as Kelvin

wave pattern. It consists of transverse waves, which move be-

hind the vessel and divergent waves, which move outward from

the moving disturbance. In finite depth, the dominance of trans-

verse and divergent systems and the subsequent Kelvin pattern

is dependant upon depth Froude number Frd =
Vs√

gh
, where Vs

is the ship speed and h is the still water-depth. The transition be-

tween these two systems is a system of wave cusps which move

along with the vessel [58]. The angle made by the cusps with

the path of the vessel is called the half-wedge angle θK . The

work in [58] provides analytical expression for the half wedge

angle θK and the wave-length at cusps LH for a point impulse

moving in calm water at a given Frd.

We present a study similar to the work in [28], where a FDM-

FVM model called BOSZ based on Nwogu’s form of Boussi-

nesq equation was used to simulate waves generated by vessels

of various sizes with analytical shape given by Eq. (8). The

work in [27] conducted similar trials using a staggered C-grid

FDM model for the weakly non-linear weakly dispersive Beji’s

form [3] of the equations, where they presented results for the

wedge angle for various Froude numbers for a vessel with shape

given by Eq. (8). We have presented our results in comparison

with similar simulations done using FUNWAVE-TVD.

The domain is rectangular with dimensions 840m × 408m,

with a constant still-water depth of h = 5m. The vessel has

length Ls = 36m, beam Bs = 6m, draft Ds = 1m. It’s shape

is defined by Eq.(8), with coefficients α1 = 16, β1 = 2 and

β2 = 16. The ship characteristics are similar to tests done in

[28]. The vessel is moved without acceleration in initially calm

water, with the ship centre starting at (51.0m, 204.0m) and mov-

ing along the X-axis at a constant velocity of 5.95m s−1, corre-

sponding to a depth Froude number Frd = 0.85. A sponge

layer of 30m is placed on each of the 4 boundaries to absorb

the vessel wake. The wave elevation is monitored along vari-

ous sections that run along the length of the domain as shown

in Fig. (13). Additionally two probes P1 and P2 are placed at

mirrored location about the centreline along with another probe

P3 to report temporal measurements.

The mesh size for vessel wake simulations will be dependant

on the wave-lengths in the wave group and the size of the ves-

sel. We consider the wave-length at cusps LH and the width of

the vessel Bs = 6 as the defining parameters. For Frd = 0.85,
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Figure 7: a) Numerical wave elevation measured at post shoaling peak elevation wave-probe (x, y) = (20, 3.048)m for various simulation time-steps with mesh

size ∆x = ∆y = 0.2032m. b) Zoomed in view of the crest of wave elevation measured at (x, y) = (20, 3.048)m for various simulation time-steps with mesh size

∆x = ∆y = 0.2032m, highlighting the influence of simulation time-step. Please note the legend is common for plots a) and b).
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Figure 8: a) Plot showing quantification of self-convergence through error parameter Pd obtained from setups M1-M5 compared against setup M6. b) Plot

demonstrating the time-step convergence using wave-elevations measured at wave-probes located at (x, y) = (5, 3.048)m, (x, y) = (12, 3.048)m and (x, y) =

(20, 3.048)m. The error Pd is evaluated for various time-steps, with ∆t = T/80 as the reference.
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Figure 9: Numerical result for wave elevation measured along the centreline of the domain at t = 40s for case-2, compared against numerical results from [39]. The

vertical lines at x = 7.60m and x = 15.25m mark the beginning and the end of the shoal along the domain centreline.
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Figure 10: Spectral analysis for wave elevation along the centreline of the domain for case-2 T = 2s. a) Comparison with experimental [46] and numerical [39, 44]

results of amplitudes of the first (black), second (red) and third (blue) harmonics of wave elevation along the centreline. b) A spectrogram along the centreline

showing the transfer of energy to higher harmonics behind the shoal. The vertical lines at x = 7.60m and x = 15.25m mark the beginning and the end of the shoal

along the domain centreline.

Figure 11: Spectral analysis for wave elevation along the centreline of the domain for case-1 T = 1s. a) Comparison with experimental [46] and numerical [43, 56]

results of amplitudes of the first (black), second (red) and third (blue) harmonics of wave elevation along the centreline. b) A spectrogram along the centreline

showing the transfer of energy to higher harmonics behind the shoal. The vertical lines at x = 7.60m and x = 15.25m mark the beginning and the end of the shoal

along the domain centreline.
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Figure 12: Plots reporting the error in conservation of mass by the presented numerical model during the entire duration of the simulation, for both case-1 T = 1s

and case-2 T = 2s.
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Figure 13: Schematic showing the simulation domain with the vessel moving along the centreline. The dashed lines indicate the sections along which wave elevation

is measured. Additionally two point probes P1 and P2 are used to report temporal measurement.

Figure 14: Samples of the two mesh types used for the simulation of vessel moving along the centreline. Type A is a constant resolution regular mesh. Type B has

a finer resolution region of width 2Bs around the vessel aimed at improving the capture of it’s pressure field.

the wave-length at cusps LH = 16.90m. It is calculated using

the analytical expressions from [58] in Appendix D. We con-

duct a brief mesh convergence study for this case. Two different

kinds of meshes were tested as shown in Fig. (14). The char-

acteristic mesh sizes are ∆r1 in the outer domain and ∆r2 in the

close vicinity of the vessel. The Type A is a regular mesh with

isosceles right angled triangles having ∆x = ∆y as the charac-

teristic mesh size throughout the domain, with the orientation of

the triangular elements mirrored about the centreline. The Type

B mesh has a 2Bs wide region of finer resolution ∆r2 about the

centreline for improved capture of the vessel’s pressure field,

and then it gradually transitions to a regular mesh of a coarser

size ∆r1 in the outer domain. The details of the tested setups

are given in Table (2).

The coarsest setup is a Type B mesh M150B with ∆r1 =

1.5m corresponding to LH/∆r1 = 11.27, consistent with the

recommendations in [2] for capturing the wave-system. Val-

ues of Bs/∆r2 < 6 were observed to be insufficient for cap-

turing the pressure field. Therefore, this coarsest setup has

∆r2 = 1.0m corresponding to Bs/∆r2 = 6. We present the

mesh convergence for waves in the outer region away from the

vessel through the P3 probe signal for the different setups as

shown in Fig. (15). Table (2) also presents the error parame-

ter Pd =
√

∑

(η − ηre f )2/
∑

(ηre f )2 for P3 probe signal for each

setup compared against the finest setup M050A. Further, the

near-vessel convergence is observed using the derived quantity

wave-making resistance Fx, calculated as described in section

3.2 for each setup and plotted in Fig. (16).

The coarsest setup M150B deviates from the finer setups in

the wave-cusps region and in-fact it captures the transverses

and divergent waves. The mesh for M100B is different from

M100A in the vicinity of the vessel, where M100B has a finer

resolution of∆r2 = 0.75m instead of the∆r2 = 1.0m in M100A,

and has a smaller time-step of 0.10s instead of 0.125s. How-

ever their Pd are very similar, which indicates that the reso-

lution around the vessel does not have a dominating effect on

the outer waves once a sufficient resolution is achieved in ves-

sel vicinity. We observe an overlap between the result from

M075A and M050A in Fig. (15), and a low Pd = 0.1279 for

M075A, thus indicating convergence for outer flow. The near-

vessel results observed through Fx indicate a fair agreement be-

tween M075A and M050A. However, the outer flow overlap is

sufficient for our analysis. Further, we note that all setups had

a Courant number in the range of 0.88 − 0.93 in these setups.

The setup M075A was re-run with a smaller Courant number

0.47 in M075A-t2 to verify the time-step convergence. The

Pd error for both of these setups are similar indicating a time-

step convergence. Therefore the mesh requirement for this case

is Bs/∆r2 = 8 near-vessel, LH/∆r1 = 22.54 in the outer re-

gion. Finally, the Kelvin wave pattern for the aforementioned

ship moving at Frd = 0.85 obtained from the converged setup

M075A is presented in Fig. (17).

The results from M075A are used for comparison against

benchmarks. The first comparison is done for the Kelvin half-

wedge angle θK formed by the wave-cusps with the ship path.

This comparison of numerically obtained θK against the ana-
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Table 2: Details of the simulation setups for pressure field in calm water.

Resolution

Mesh

name
Type

Outer

∆r1

LH

∆r1

Near

vessel

∆r2

Bs

∆r2

Time

step

Courant

number

P3

Error

Pd

(m) (m) (s)

M150B B 1.50 11.27 1.00 6 0.1250 0.88 0.4585

M100A A 1.00 16.90 1.00 6 0.1250 0.88 0.2374

M100B B 1.00 16.90 0.75 8 0.1000 0.93 0.2397

M075A A 0.75 22.54 0.75 8 0.1000 0.93 0.1246

M075A-t2 A 0.75 22.54 0.75 8 0.0500 0.47 0.1279

M050A A 0.50 33.81 0.50 12 0.0625 0.88 Ref
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Figure 15: Plot of wave elevation at probe P3 for various simulation setups. It is used for establishing the mesh convergence. a) Zoom out view. b) Zoomed in view

to highlight the wave-cusps.
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Figure 17: Contour plot of surface elevation obtained using M075A setup of our numerical model, with the highlighted half-wedge angle formed by the cusps.
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Figure 19: Plot of relative amplitude error parameters Ar quantifying the comparison of wave-elevation obtained from FEBOUSS M075A and FUNWAVE-TVD,

measured along various sections.

lytical result is often presented as a validation case for wake

generated by moving pressure field, as shown in [27, 28]. The

analytical value is θK = 24.76° for Frd = 0.85, and was cal-

culated using the expressions from [58] in Appendix D. We

utilise the peaks of wave elevation obtained from FEBOUSS at

section F and section G to calculated the numerically obtained

θK = 24.06°. Hence, the difference against the analytical ex-

pression is a reasonable 2.83%. Fig. (17) highlights the numer-

ically obtained θK over the wave-elevation contour.

The results are further benchmarked against the same sim-

ulations done in FUNWAVE-TVD. The same domain with a

regular quadrilateral mesh of size 0.75m with Courant num-

ber Cou = 0.2 was used in FUNWAVE-TVD. The surface

elevation at t = 100s is measured along various sections as

shown in Fig. (13). The comparison between results from

both the models is presented in Fig. (18). We have quanti-

fied the comparison of results using relative amplitude error

parameter Ar =
√

∑

(ηFE)2/
∑

(ηFU)2, where ηFE and ηFU are

wave-elevation along a section obtained from FEBOUSS and

FUNWAVE-TVD respectively. A perfect agreement between

the wave-elevations would result in Ar → 1. Fig. (19) plots this

for the wave-elevation measured along the various sections.

The major different between the results from FEBOUSS and

FUNWAVE-TVD is observed in the peak draft under the ves-

sel as seen in the plots along section A between x = 630m and

x = 680m. With the prescribed draft of the vessel being 1m,

we observe from section A that FEBOUSS under-predicts the

maximum draft. At the stern of the vessel a wave peak is gener-

ated as the flow converges after flowing around the vessel. This

peak is higher in FUNWAVE-TVD than in FEBOUSS. There-

fore section A shows a lower correlation between the models as

seen with Ar = 0.64. Other than these differences in near-vessel

region, the results from sections in outer region show some dif-

ferences in the transition zone between divergent and transverse

waves. However, as seen in Fig. (18) the results from both the

models match fairly well, with similar frequency and amplitude

of the transverse waves, and a good agreement of the divergent

waves in front of the cusps. Sections C-G have Ar values close

to 1 indicating a fair agreement between the wave-elevations

from FEBOUSS and FUNWAVE-TVD.

4.4. Pressure field moving along a curved path

In addition to straight line paths, the moving pressure field

implementation can be used for simulating ships moving along

curved paths. For example, consider the case of ocean-going

ships navigating the Hooghly river channel to access the major

port of Kolkata in eastern India. The ships will have to negoti-

ate multiple meanders along the river, similar to the highlighted

Uluberia meander, as shown in Fig. (20a). In this particular

example, the ships have to take up-to 85° turns at close to cruis-

ing speed to ensure the clearance of all the traffic within the

high-tide period. A practical application of this would require

the position and heading of the pressure field to be specified at

certain time-instances, which may be irregularly spaced. There-

fore, the path of the pressure field will have to be interpolated

as per the simulation time-stepping requirements. In this sec-

tion we demonstrate the significance of this path interpolation

scheme.

We take a curved numerical domain as shown in Fig. (20b),

overlapping the snapshot of the Uluberia meander obtained

from Google Earth. The domain was made by picking points

along the centreline of the river on Google Earth, connecting

them thorough a spline and offsetting the spline by 250m on

either side, creating a 500m wide curved domain. This water-

way along the Hooghly river is regularly dredged to create a

navigation path of 8m. Therefore, for this demonstration we

have taken a fixed water depth of 8m throughout the domain.

The inner and outer curves of the domain are walls and sponge

layer of size 50m is placed on the remaining two boundaries

for absorbing the waves. This curved channel is being used

only to demonstrate the waves generated by ship moving along

a curved path. A vessel of length 180m, breadth 30m and draft

of 5m with shape defined by Eq. (8) is moved along the curved

path at a constant speed of 10.5knots or 5.4m s−1 correspond-
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Figure 20: a) Snapshot from Google Maps showing the Hooghly river draining into the Bay of Bengal, with it’s meander near Uluberia highlighted. b) Snapshot of

the meander near Uluberia 22.4629° N, 88.12° E obtained from Google Earth with the superimposed. The dashed line is the curved path taken by the vessel.

Figure 21: A section of the curved domain showcasing the unstructured mesh. The dashed line is the path of the pressure field.
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ing to a Froude number of Frd = 0.6. These are representative

of container vessel SSL Kutch (IMO 9157662) which is known

to navigate this path to berth at Kolkata port. The unstructured

mesh, as shown in Fig. (21), has a smaller resolution of 1.5m

in a 60m band along the curved path of the ship. The rest of

the domain has a mesh size of 1.75m, resulting in 926, 721 tri-

angular elements. The ship starts at the bottom of the domain

and traverses a path of over 2.8km in 525s with the simulation

running at a fixed time-step of 0.125s.

The path of the ship as shown in Fig. (20b) is specified us-

ing positions at irregular time-instances as given in Table 3.

The interpolation of these positions as per the simulation time-

stepping requirement is done using linear and natural cubic

spline methods. Fig. (22a) shows the ship centre’s interpolated

position X between the user specified time instances (marked

by the vertical grid-lines). In the C0 continuous linear interpo-

lation, the derivatives ∂X/∂t, ∂Y/∂t and ∂θ/∂t will be discon-

tinuous across the user specified time-instances. The effect of

this can be seen in the force Y plot in Fig. (22b), where numer-

ical shocks are observed after each user specified time-instant.

A more visual manifestation is seen Fig. (23), where the con-

tour plot of surface elevation is presented at t = 300s for both

interpolation methods. In case of linear interpolation, ripples

are created due to the sudden change in the rate of position

and heading. In reality, the ships cannot make a sudden turn

like this and will instead make smooth turns. Therefore the C2

continuous natural cubic spline method ensure a more realistic

result through continuous derivatives up-to second order. The

resultant smooth path for the ship avoids any unnatural shocks

or ripples as seen in the force plot and surface elevation con-

tour. Therefore, in order to simulate ship motion along arbitrary

paths, it is crucial to avoid linear-interpolation of the path.

4.5. Waves generated by fast moving ferry in Tallinn Bay

This section presents real world application of FEBOUSS for

simulating waves generated by moving vessels, along with val-

idation against field measurements. We utilise the field mea-

surements from Tallinn Bay, which is a 10km×20km region on

the north-eastern end of Baltic sea along the northern coastline

of Estonia, as shown in Fig. (24a). It is flanked by Estonia’s

capital city of Tallinn on the south, island of Naissaar on the

north-west, Viimsi Peninsula on the east and Aegna island on

the north-east as shown in Fig. (24b). Due to these landmasses,

the bay is fairly protected from winds with the mean significant

wave-height Hs of wind-generated waves below 0.5m and oc-

casional rough seas with Hs in 3m − 4m range [59]. Fig. (24b)

shows the navigation path taken by vessels to access the major

passenger port of Tallinn from Gulf of Finland. It is a heavy

traffic route used by large passenger vessels, including high-

speed ferries servicing the Tallinn-Helsinki ferry link. In the

summer of 2008, the ferries from this link alone accounted for

20 crossings per day in each direction. Typical wind waves in

this region have a period below 3s, however the ship-generated

waves can often be of 10−12s. Due to the mild wind conditions

in this region, the waves generated by these vessels contributed

to 5 − 8% of total wave energy and 18 − 35% of wave power

as reported in [59]. Therefore, extensive field measurements

were done to study the impact of ship-generated waves on the

surrounding coastline. We use the measurements from the sum-

mer of 2008 campaign which is detailed in [22].

The navigation path shown in Fig. (24b) is along a trench in

the local topography. This trench is seen in the depth contours

for the bay region in Fig .(25a). The north-bound vessels move

close to the east coastline, with Aegna island being closest to

the path at 2km. By the time the vessels approach the island,

they have accelerated to their design speed [33]. Therefore the

southern and western coastlines of Aegna island are heavily ex-

posed to ship-wakes. The campaign in June-July of 2008 as re-

ported in [22] took field measurements for wave-elevation at a

mixed sand-gravel beach on the south-west end of Aegna island

as shown in Fig .(25a) with annotation WGA. The measure-

ments were taken using an ultrasonic echo-sounder mounted on

a tripod about 100m from the coast at a sampling frequency of

5Hz. WGA is located at (56° 34.26′ N, 24° 45.36′ E) with local

water depth of 2.8m during the observation period. Using this

setup, measurements of ship-wakes due to various large vessels

navigating this path were reported in [22].

We use the data measured for mono-hull high speed ferry

SuperSeaCat on 29-June-2008. This data-set has been used

in a number of numerical [32, 33] and analysis publications

[60, 61]. The vessel has length of Ls = 100.3m, beam Bs =

17.1m and draft Ds = 2.6m with design speed of 35knots ≈
18m s−1. The position and speed of this ferry were recorded

using GPS every second. The actual path of the ship is plot-

ted in Fig .(25a). Numerical simulation for this case was done

using a highly-nonlinear Boussinesq equation model COUL-

WAVE [8, 9] and the comparison against field measurements

was reported in [33]. We will follow a similar approach for val-

idating FEBOUSS results against the field measurements. The

COULWAVE simulation in [33] were done using a 7.5m×7.5m

rectangular grid. They have reported attempting a finer mesh

resolution of 5m. However this resulted in numerical instabil-

ities in COULWAVE due to grid scale noise [33]. They have

used the pressure field with dimensions Ls = 100m, Bs = 40m

and Ds = 1m, with the shape defined by Eq. (6) and coefficients

α1 = α2 = β1 = 0.75. We denoted this shape as SSB40. Please

note the difference in the beam and draft of the actual vessel

and the pressure field. We believe the wider beam was used due

to the coarse mesh size of 7.5m and therefore a lower draft was

used to maintain the displacement of the vessel. The change

in pressure field dimensions is expected to have limited influ-

ence over the long waves. We simulate this case in FEBOUSS

using pressure field with dimensions Ls = 100m, Bs = 18m

and Ds = 2.6m, with the shape given by Eq. (6) with coeffi-

cients α1 = α2 = 0.75, β1 = 0.50. These parameters denoted as

SSB18 are closer to the real ship dimensions and have the same

displacement as SSB40.

We have taken a numerical domain of size 4500m × 7800m

by considering the ship path and the probe location. The po-

sition of this domain within the bay is show in Fig .(25a) The

bathymetry data was provided at a resolution of 0.5′ = 463m

longitude and 0.25′ = 470m latitude [33]. This is mapped

on to the numerical domain as shown in Fig .(25b). Due to

inaccuracies in the given bathymetry data, the local depth at
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Table 3: Table listing the ship centre’s position (xs, ys) and heading θs specified as user inputs to the program at certain time-instances to make the ship move along

the curved path.

t(s) 0 24.67 47.90 91.10 134.31 177.49 220.66 · · · 593.77

xs(m) 272.11 222.39 179.36 111.44 62.83 39.92 51.87 · · · 1468.80

ys(m) 1471.9 1595.5 1713.3 1936.5 2164.6 2396.7 2629.5 · · · 3950.4

θ(°) 111.91 110.07 106.92 102.03 95.64 87.06 75.54 · · · 28.68
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Figure 22: a) Plot of ship centre’s position interpolated between user given points (marked by the vertical grid-lines) using linear and cubic spline methods. b) The

discontinuous gradient in linear method results in shocks in the simulation which is seen in the force Y plots.

Figure 23: The surface elevation contours showing the significance of cubic spline interpolation of ship’s path against the linear interpolation of ship’s path. The

dashed line is the path taken by the vessel.
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Figure 24: a) Map highlighting the location of Tallinn Bay along the northern coastline of Estonia. b) Map of Tallinn Bay region obtained from Google Maps

(59.4964° N, 24.6562° E) showing the important landmasses surrounding the bay. The solid line indicates the route taken by vessels to access Tallinn port from

Gulf of Finland.
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Figure 25: a) Contour plot for water depth in Tallinn Bay. The dashed line shows the location and size of the numerical domain. The solid line is the measured

path taken by the ferry SuperSeaCat. The cross shows the location of wave gauge WGA used for measuring the wave impacting Aegna island. b) Plot showing the

numerical domain with depth contours. The simulated ship path is shown by the solid line. The numerical measurement of surface elevation are reported at WGN.
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WGA in the numerical domain is 1.2m instead of the mea-

sured 2.8m. Therefore, we use a nearby location WGN at

(56° 34.12′ N, 24° 45.33′ E) for reporting the numerical re-

sults, similar to the COULWAVE simulations for this case in

[33]. We simulate a portion of the ship’s path as shown in

Fig .(25b). The starting position for the pressure field is about

4.7km from WGN, to allow for the development of the wake

patterns. The GPS track indicates the ship moving at a speed

of 15.96m s−1 ≈ 31knots along this path. The waves reaching

WGN are thus generated while the ship moves in depth of range

29m− 53m with the depth Froude number in range 0.69− 0.94.

The pressure field is started without acceleration and follows

the GPS tracked path of the ship.

We use an unstructured FEM mesh with irregular triangles.

It is generated using ANSYS Meshing software. The domain

is divided into various sections as shown in Fig. (26). Follow-

ing the analysis from section 4.3, a band of triangles with side

5m along the ship length direction and 2m along the ship beam

direction was generated to accommodate the narrow beam of

Bs = 18m in SSB18 as shown in Fig. (26a). The majority of the

remaining domain consists of irregular triangles and isosceles

right-angled triangles with size 5m as shown in Figs. (26b) and

(26c). Sponge layers of width 500m are placed along the east,

west and south boundaries, and a width of 1000m along the

north boundary. This is done to ensure absorption of the long

waves. The mesh size in these sponge layers transitions from

5m to 10m, as shown in Fig. (26d). Overall the domain con-

sists of 2.43 million triangular elements. As mentioned in sec-

tion 2, the present model does not include wave-breaking. Bot-

tom friction is implemented using quadratic law as per Eq. (3),

using Manning coefficient = 0.033. The simulation time-step

is constant at ∆t = 0.1s, corresponding to Courant number

Cou = 0.97 in the narrow band along the ship’s path due to

the triangles with side 2m, and Cou < 0.5 throughout the re-

maining domain.

The surface elevation contours obtained from FEBOUSS for

SSB18 are shown in Fig. (27a). As the ship follows the path in

the trench, the waves undergo refraction and shoaling over the

steep slopes of the trench. The waves thus turn towards Aegna

island, heading directly for its south-western coastline. This is

line with the observations in [59] and simulations in [32, 33],

where the south-western coast of Aegna is termed as a ”hot-

spot” for the impact of ship generated waves.

The numerical results at WGN are compared against field

measurements in Fig. (28). The field measured results are fil-

tered with low-pass filter at a cut off frequency of 0.29Hz = 3.5s

to minimise the wind generated waves. FEBOUSS time-series

for SSB18 in Fig. (28a) match fairly well with the field mea-

surements, especially in the wave amplitude. The difference

in phase beyond t = 510s is likely due to the limitations of the

wave damping. The amplitude spectrum in Fig. (28b) shows the

primary peak period of 10.22s from FEBOUSS SSB18, which

is within 4.3% of the field measured peak of 10.68s. However,

the numerical results for higher frequencies are muted in the

time-series and the spectrum. Considering the inherent approxi-

mation of pressure field moving in 2DH model, with a relatively

coarse resolution for the bathymetry, the obtained results are

fairly functional for simulating waves generated by ship mov-

ing in 3D space.

We have also carried out the FEBOUSS simulation using

ship shape SSB40, similar to the COULWAVE simulations in

[33]. By comparing the contour plots in Fig. (27a) for SSB18

and Fig. (27b) for SSB40, we observe that due to the wider

beam and lower draft of SSB40, it does not generate certain

high frequency waves. For example, we can observe this in the

wave elevation along a line section at y = 5350m as shown

in Fig. (29a). The time-series in Fig. (28a) in the shallower

depth of WGN shows a marginal difference between the results

from the two shapes. On a closer look through the spectrum

in Fig. (28b), we observe lower amplitudes of high frequencies

for SSB40 when compared with SSB18. However, the limited

difference in the results from SSB18 and SSB40 indicates that

waves away from the vessel are largely dependent on the length

and displacement of the pressure field. When compared with

the COULWAVE results, which were digitised from [33], the

FEBOUSS result for both shapes SSB18 and SSB40 show an

improved agreement against the field measurements.

The variation of wave-making resistance against the surge

direction, estimated using Eq. (13), while the ship moves in

changing water depth is shown in Fig. (29b). We observe the

expected trend of direct correlation between the wave-making

resistance and depth Froude number. The values for SSB40

are about 20% lower than SSB18, thus highlighting the dif-

ference in near-vessel flow due to the change in the shape of

the pressure field. The vessel SuperSeaCat has a total installed

propulsive capacity of 27.5MW. The wave-making resistance

obtained from SSB18 as shown in Fig. (29b) is in the range of

550 − 900kN, which corresponds to 8.8 − 14.4MW power for

the vessel moving at 31knots. However, a direct comparison

of the estimated and real wave-making resistance could not be

established in this exercise.

This section thus provided a validation for FEBOUSS against

field measurements using a problem involving moving vessel

and variable bathymetry. The approach followed here can be

used for identifying regions sensitive to ship-wakes in high traf-

fic areas. Further, it can be used to alter the navigation paths for

minimising the impact on surrounding coastline.

5. Conclusion

The paper has presented development of an unstructured

finite element model (FEBOUSS) based on Madsen and

Sørensen’s form of Boussinesq equations for simulation of free

surface flows. The model employed standard Galerkin method

with mixed linear and quadratic shape functions; analytical in-

tegration of elemental integrals; and a stable time-marching

through Runge-Kutta 4th order method. It was verified through

comparisons against experimental and numerical results for

wave transformation over the complex Whalin shoal. We also

demonstrated the mesh and time-step convergence of the model

and reported the conservation of mass.

Simulation of ship-generated waves in finite water depth was

implemented in FEBOUSS by using a moving pressure field.
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Figure 26: Various sections of the FEM mesh. a) A band along the ship’s path with small resolution to capture the beam of the pressure field. b) Mesh transitioning

from irregular triangles to regular triangles. c) Regular mesh around the measurement location WGN. d) Mesh transitioning to coarser resolution in the sponge

layer.

Shape of the vessel was prescribed through analytical expres-

sions. The wave-making force was estimated through gradient

of surface-elevation, which was calculated using a mesh-free

approach. This estimated force may not be accurate but can

be useful in drawing practical conclusions. These methods can

simulate multiple ships moving along arbitrary paths. A sim-

ulation for ship moving along a straight path in finite depth

was presented. We conducted a convergence analysis and pre-

scribed the mesh and time-step requirements for capturing the

vessel profile and the dominant waves. The results for surface

elevation were compared against similar simulations done in

FUNWAVE-TVD. We also simulated a ship moving along the

curved path of a river channel, and highlighted the requirement

of smooth interpolation of the ship’s path at simulation time-

step.

The paper finally presented a real world application by sim-

ulating waves generated by a fast-ferry in Tallinn bay region

in Estonia using FEBOUSS. The unstructured grid enabled lo-

cal refinement of the mesh along the ship’s path, thus allowing

capture of the relatively narrow beam of the vessel. The results

showcased the concentration of ship-generated waves towards

a particular landmass due to the local bathymetry. Further, the

results were validated against field measurements for wave ele-

vation. We also investigated the impact of modifying the ship’s

beam and draft while keeping the length and displacement con-

stant. With the modified dimensions, no significant difference

was observed in the long waves away from the vessel. How-

ever, the near vessel flow was missing high frequency waves

for the wider shape. This example demonstrated the application

of FEBOUSS and similar models for identifying regions which

are sensitive to ship-generated waves in high-traffic regions.

The key highlight of this manuscript is the presentation and
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Figure 27: Plot showing filled contour plots for surface elevation η at t = 380s in a portion of the numerical domain. The white lines are water depth contours with

the depth mentioned in meters. The red solid line is the ship’s path. a) Ship shape SSB18 b) Ship shape SSB40
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investigation of a stable finite-element model capable of sim-

ulating wave-transformation over uneven bathymetry. The im-

plementation over unstructured triangular grid allows for local

mesh refinement which is crucial for capturing the multi-scale

physics over large domains. Further, the implementation of

pressure field moving along an arbitrary path enables efficient

reproduction of the ship-generated waves for practical applica-

tions, such as mooring loads and sediment transport in sheltered

harbour.

This work has set the basis for applying FEBOUSS for simu-

lating a variety of scenarios. Building on this, further develop-

ments by inclusion of sediment transport, wave-breaking, tidal

and current effects can improve the practical functionality for

field application of this model in estimating shoreline evolution.

Additional research will be required to specifically identify the

correlation between the physical dimension of a vessel and the

dimensions of the corresponding pressure field in the context

of simulating ship-generated waves. A correlation could also

be established between the real wave-making force and the ap-

proximation presented in this manuscript. In terms of applica-

tions, the future work could also study the interaction between

wakes of multiple vessels in a harbour. Further, this 2DH model

can be coupled with 3D viscous flow model to enable accurate

and efficient simulation of large-domain problems while incor-

porating different physics.

6. Acknowledgement

The first author acknowledges the support of Prime Minis-

ter’s Research Fellowship (PMRF), India in funding this re-

search work. We would like to acknowledge NTCPWC, Min-

istry of Shipping, India for funding the project ”Assessment

tool for assessing the impact of Ship/Boat Wake Waves on

the banks and protection measures for Inland National Water-

ways”. P. L.-F. Liu would like to acknowledge the supports

from the VAJRA Faculty Scheme of India, National University

of Singapore, Cornell University, and the National Research

Foundation through a grant to the National University of Sin-

gapore (Award number:NRF2018NRF-NSFC003ES-002. This

research was also supported in part by Yushan Program, Min-

istry of Education in Taiwan. The authors thank Dr. Ira Di-

denkulova from University of Oslo, Norway for providing the

field measurement data for section 4.5. The authors thank the

anonymous reviewers and editor for their constructive feedback

on the manuscript.

Declaration of interests

The authors report no conflict of interest.

Author ORCIDs

S. Agarwal: https://orcid.org/0000-0003-1922-4242

V. Sriram: https://orcid.org/0000-0003-3586-9577

P. L.-F. Liu: https://orcid.org/0000-0002-2170-5507

K. Murali: https://orcid.org/0000-0002-4251-841X

Author contributions

S. Agarwal: Conceptualisation, Software, Validation, Formal

analysis, Methodology, Writing – original draft, Visualisation.

V. Sriram: Conceptualisation, Methodology, Writing – review

and editing, Funding acquisition, Supervision. P. L.-F. Liu:

Conceptualisation, Writing — review and editing. K. Murali:

Writing – review and editing, Funding acquisition, Supervision.

References

[1] D. H. Peregrine, Long waves on a beach, Journal of Fluid Mechanics

27 (4) (1967) 815–827. doi:10.1017/S0022112067002605.

[2] P. A. Madsen, R. Murray, O. R. Sørensen, A new form of the Boussi-

nesq equations with improved linear dispersion characteristics, Coastal

Engineering 15 (4) (1991) 371–388. doi:10.1016/0378-3839(91)

90017-B.

[3] S. Beji, K. Nadaoka, A formal derivation and numerical modelling

of the improved boussinesq equations for varying depth, Ocean Engi-

neering 23 (8) (1996) 691–704. doi:https://doi.org/10.1016/

0029-8018(96)84408-8.

Page 24 of 28

https://doi.org/10.1016/j.oceaneng.2022.112202
https://orcid.org/0000-0003-1922-4242
https://orcid.org/0000-0003-3586-9577
https://orcid.org/0000-0002-2170-5507
https://orcid.org/0000-0002-4251-841X
http://dx.doi.org/10.1017/S0022112067002605
http://dx.doi.org/10.1016/0378-3839(91)90017-B
http://dx.doi.org/10.1016/0378-3839(91)90017-B
http://dx.doi.org/https://doi.org/10.1016/0029-8018(96)84408-8
http://dx.doi.org/https://doi.org/10.1016/0029-8018(96)84408-8


Published version doi:10.1016/j.oceaneng.2022.112202 Accepted manuscript, Ocean Engineering

[4] O. Nwogu, Alternative form of boussinesq equations for nearshore wave

propagation, Journal of Waterway, Port, Coastal, and Ocean Engineer-

ing 119 (6) (1993) 618–638. doi:10.1061/(ASCE)0733-950X(1993)

119:6(618).

[5] P. L.-F. Liu, Model equations for wave propagations from deep to shallow

water, Advances In Coastal And Ocean Engineering: (Volume 1) (1995)

125–157doi:10.1142/9789812797582_0003.

[6] G. Wei, J. T. Kirby, S. T. Grilli, R. Subramanya, A fully nonlinear

Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady

waves, Journal of Fluid Mechanics 294 (1995) 71–92. doi:10.1017/

S0022112095002813.

[7] A. G. Filippini, S. Bellec, M. Colin, M. Ricchiuto, On the nonlinear be-

haviour of Boussinesq type models: Amplitude-velocity vs amplitude-

flux forms, Coastal Engineering 99 (2015) 109–123. doi:10.1016/j.

coastaleng.2015.02.003.

[8] P. J. Lynett, T.-R. Wu, P. L.-F. Liu, Modeling wave runup with depth-

integrated equations, Coastal Engineering 46 (2) (2002) 89–107. doi:

10.1016/S0378-3839(02)00043-1.

[9] K. Sitanggang, P. Lynett, Parallel computation of a highly nonlinear

boussinesq equation model through domain decomposition, International

Journal for Numerical Methods in Fluids 49 (1) (2005) 57–74. doi:

10.1002/fld.985.

[10] F. Shi, J. T. Kirby, J. C. Harris, J. D. Geiman, S. T. Grilli, A high-order

adaptive time-stepping TVD solver for Boussinesq modeling of break-

ing waves and coastal inundation, Ocean Modelling 43-44 (2012) 36–51.

doi:https://doi.org/10.1016/j.ocemod.2011.12.004.

[11] M. F. Gobbi, J. T. Kirby, G. Wei, A fully nonlinear boussinesq model for

surface waves. part 2. extension to o(kh)4, Journal of Fluid Mechanics

405 (2000) 181–210. doi:10.1017/S0022112099007247.

[12] M. Brocchini, A reasoned overview on Boussinesq-type models: the in-

terplay between physics, mathematics and numerics, Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences 469

(2013) 1–27. doi:10.1098/rspa.2013.0496.

[13] A. E. Green, P. M. Naghdi, A derivation of equations for wave propaga-

tion in water of variable depth, Journal of Fluid Mechanics 78 (2) (1976)

237–246. doi:10.1017/S0022112076002425.

[14] P. G. Drazin, R. Johnson, Solitons: an introduction, 2nd edition, Cam-

bridge University Press (1989). doi:10.1017/CBO9781139172059.

[15] L. Alzaleq, V. Manoranjan, B. Alzalg, Exact traveling waves of a gener-

alized scale-invariant analogue of the korteweg–de vries equation, Math-

ematics 10 (3) (2022) 414. doi:10.3390/math10030414.

[16] D.-J. Zhang, S.-L. Zhao, Y.-Y. Sun, J. Zhou, Solutions to the modified

korteweg–de vries equation, Reviews in Mathematical Physics 26 (07)

(2014) 1430006. doi:10.1142/S0129055X14300064.

[17] H. Durur, O. Tasbozan, A. Kurt, New analytical solutions of conformable

time fractional bad and good modified boussinesq equations, Applied

Mathematics and Nonlinear Sciences 5 (1) (2020) 447–454. doi:doi:

10.2478/amns.2020.1.00042.

[18] P. J. Lynett, P. L.-F. Liu, Linear analysis of the multi-layer model, Coastal

Engineering 51 (5-6) (2004) 439–454. doi:10.1016/j.coastaleng.

2004.05.004.

[19] P. Lynett, P. L.-F. Liu, A two-layer approach to wave modelling, Proceed-

ings of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences 460 (2004) 2637–2669. doi:10.1098/rspa.2004.1305.

[20] Z. T. Yang, P. L.-F. Liu, Depth-integrated wave–current models. Part 1.

Two-dimensional formulation and applications, Journal of Fluid Mechan-

ics 883 (2020) A4. doi:10.1017/jfm.2019.831.

[21] Z. T. Yang, P. L.-F. Liu, Depth-integrated wave-current models. Part 2.

Currents with an arbitrary profile, Journal of Fluid Mechanics 936 (2022)

A31. doi:10.1017/jfm.2022.42.

[22] K. Parnell, N. Delpeche, I. Didenkulova, T. Dolphin, A. Erm, A. Kask,
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Appendix A. Analytical integration of FEM terms

The procedure for the analytical integration of the FEM terms

using Mathematica software [49] is described below. Consider

the integral in D[3×3] matrix. Given that the Jacobian of a trian-

gular element is denoted as J =
[

J1 J2

J3 J4

]

the expression for the

integral with derivatives over a natural triangular element are

expressed as
∫

Ω

[

∂ψi

∂x
h
∂ψ j

∂x

]

3×3

dΩ =
|J|
2

∫ ξ=1

ξ=0

∫ γ=1−ξ

γ=0

[K] dγ dξ

(A.1a)

[K] =





















K11 K12 K13

K12 K22 K23

K13 K23 K33





















(A.1b)

K11 = (J1 + J2)2(h1(−γ − ξ + 1) + h2ξ + γh3) (A.1c)

K12 = J1(J1 + J2)(h1(γ + ξ − 1) − h2ξ − γh3) (A.1d)

K13 = J2(J1 + J2)(h1(γ + ξ − 1) − h2ξ − γh3) (A.1e)

K22 = J2
1(h1(−γ − ξ + 1) + h2ξ + γh3) (A.1f)

K23 = J1J2(h1(−γ − ξ + 1) + h2ξ + γh3) (A.1g)

K33 = J2
2(h1(−γ − ξ + 1) + h2ξ + γh3) (A.1h)

Here ξ and γ represent the axes in the coordinate system for the

natural triangular element and h1, h2, h3 are the nodal values

for h. The analytical integration will result in

∫

Ω

[

∂ψi

∂x
h
∂ψ j

∂x

]

3×3

dΩ =















1
6

(J1+J2)2(h1+h2+h3) − 1
6

J1(J1+J2)(h1+h2+h3) − 1
6

J2(J1+J2)(h1+h2+h3)

− 1
6

J1(J1+J2)(h1+h2+h3) 1
6

J2
1
(h1+h2+h3) 1

6
J1 J2(h1+h2+h3)

− 1
6

J2(J1+J2)(h1+h2+h3) 1
6

J1 J2(h1+h2+h3) 1
6

J2
2
(h1+h2+h3)















(A.2)

which will be directly coded into the program. This prevents the

requirement of Gauss quadrature for calculating the integral.

The procedure may seem tedious, however it has to be done

just for a few combinations of the integrals such as
∂ψi

∂x
h
∂ψ j

∂x
and

ψih
∂ψ j

∂x
. Once coded, it can be reused for various expressions

by replacing the scalar h, and by using [J3 J4] for y derivative

instead of [J1 J2].

Appendix B. Expressions for domain and boundary inte-

grals

This section provides the expressions for the matrices in the

algebraic form of the governing equations given in Eq. (10a).

HereΩ is the area integral over a triangular element, Γ is bound-

ary integral over the domain-boundary only for the elements

along the domain-boundary and (nx, ny) is the outward unit nor-

mal for the domain-boundary side.

Mass matrices for each triangular element

M1[6×6] =

∫

Ω

ϕiϕ j dΩ (B.1a)

M2[3×3] =

∫

Ω

ψiψ j dΩ (B.1b)

Matrices in auxiliary variable equation Eq. (10a)

D[3×3] = −
∫

Ω

(

∂ψi

∂x
h
∂ψ j

∂x
+
∂ψi

∂y
h
∂ψ j

∂y

)

dΩ

+

∫

Γ

(

ψih
∂ψ j

∂x
nx + ψih

∂ψ j

∂y
ny

)

dΓ

(B.2)
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Velocity flux gradient matrices in the continuity equation

Eq. (10b)

Cx[3×6] = −
∫

Ω

ψi

∂ϕ j

∂x
dΩ (B.3a)

Cy[3×6] = −
∫

Ω

ψi

∂ϕ j

∂y
dΩ (B.3b)

Boussinesq terms in the momentum governing equation

Eq. (10c)

B1[6×6] =

∫

Ω

[

(

B +
1

3

)

∂ϕi

∂x
h2
∂ϕ j

∂x

]

dΩ

+

[

(

2B +
1

3

)

ϕih
∂h

∂x

∂ϕ j

∂x

]

dΩ

−
∫

Γ

[

(

B +
1

3

)

ϕih
2
∂ϕ j

∂x

]

nx dΓ

(B.4a)

B2[6×6] =

∫

Ω

[

(

B +
1

3

)

∂ϕi

∂x
h2
∂ϕ j

∂y

]

dΩ

+

[

(

2B +
1

2

)

ϕih
∂h

∂x

∂ϕ j

∂y
− 1

6
ϕih

∂h

∂y

∂ϕ j

∂x

]

dΩ

−
∫

Γ

[

(

B +
1

3

)

ϕih
2
∂ϕ j

∂y

]

nx dΓ

(B.4b)

B3[6×6] =

∫

Ω

[

(

B +
1

3

)

∂ϕi

∂y
h2
∂ϕ j

∂x

]

dΩ

+

[

(

2B +
1

2

)

ϕih
∂h

∂y

∂ϕ j

∂x
− 1

6
ϕih

∂h

∂x

∂ϕ j

∂y

]

dΩ

−
∫

Γ

[

(

B +
1

3

)

ϕih
2
∂ϕ j

∂x

]

ny dΓ

(B.4c)

B4[6×6] =

∫

Ω

[

(

B +
1

3

)

∂ϕi

∂y
h2
∂ϕ j

∂y

]

dΩ

+

[

(

2B +
1

3

)

ϕih
∂h

∂y

∂ϕ j

∂y

]

dΩ

−
∫

Γ

[

(

B +
1

3

)

ϕih
2
∂ϕ j

∂y

]

ny dΓ

(B.4d)

B5[6×3] =

∫

Ω

Bg

[

ϕih
2
∂ψ j

∂x

]

dΩ (B.4e)

B6[6×3] =

∫

Ω

Bg

[

ϕih
2
∂ψ j

∂y

]

dΩ (B.4f)

All of the expression above are independent of time and only

require a one-time calculation in the beginning of the simula-

tion. The following matrices are dependant on time and are

calculated at each step of the RK4 time-stepping algorithm.

Advection matrices in momentum equations Eq. (10c)

N[6×6] = −
∫

Ω

[

ϕi

(

P

d

)∂ϕ j

∂x
+ ϕi

∂

∂x

(

P

d

)

ϕ j

]

dΩ

+

[

ϕi

(

Q

d

)∂ϕ j

∂y
+ ϕi

∂

∂y

(

Q

d

)

ϕ j

]

dΩ

(B.5)

Elevation gradient matrices in momentum equations Eq. (10c)

Gx[6×3] = −
∫

Ω

g

[

ϕid
∂ψ j

∂x

]

dΩ (B.6a)

Gy[6×3] = −
∫

Ω

g

[

ϕid
∂ψ j

∂y

]

dΩ (B.6b)

Surface-pressure gradient matrices in momentum equations

Eq. (10c)

Ex[6×6] = −
∫

Ω

1

ρ

[

ϕid
∂ϕ j

∂x

]

dΩ (B.7a)

Ey[6×6] = −
∫

Ω

1

ρ

[

ϕid
∂ϕ j

∂y

]

dΩ (B.7b)

Appendix C. Dispersion error in the mixed numerical

scheme

The work in [50] reported the dispersion error as a func-

tion of the mesh-size for various numerical schemes applied to

the 1DH Madsen and Sørensen’s equations [43]. This section

briefly reports numerically evaluated dispersion error for the

mixed numerical scheme of FEBOUSS, where the basis func-

tion is linear for η and quadratic polynomial for P and Q. The

dispersion error in this study is represented as the relative dif-

ference between numerical and analytical wave-celerity. Sim-

ulations were carried out for a regular wave with time-period

T = 1.25s, wave-height H = 0.02m in water-depth h = 1m

corresponding to wave-length L = 2.41m and kh = 2.6. Ta-

ble C.4 lists the various mesh-sizes, where N = L/∆x is the

number of elements along a single wave-length. The numeri-

cal wave-celerity C was calculated using η time-series at two

wave-probes and compared against the analytical celerity CMS

from [43] given by the following expression with B = 1/15.

C2
MS = gh

1 + Bk2h2

1 + (B + 1/3) k2h2
(C.1)

CMS = 1.9798m s−1 for the tested regular wave. Fig. (C.30)

presents the quadratic trend of the dispersion error for the

FEBOUSS scheme through a plot of relative error in wave-

celerity against the mesh-size.

Appendix D. Estimation of wave-length at the cusps

The analytical expressions for half-wedge angle θK and cor-

responding wave-length at cusps LH were derived in [58] for

point disturbance moving at a constant speed in still water at

finite depths. We take h as still water-depth, k = 2π/LH as the

wavenumber and Vs as the speed of the moving disturbance.
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Figure C.30: Relative error in numerical value of wave-celerity C compared against analytical value CMS for a regular wave with kh = 2.6. Here, N is the number

of elements along a single wave-length.

Table C.4: Details for mesh setup for simulating regular wave with kh = 2.6.

Here, N is the number of elements per wave-length.

SN N 1/N Celerity Relative Error

C
C−CMS

CMS

1 24.13 0.0414 1.9870 0.0037

2 15.08 0.0663 1.9872 0.0037

3 12.06 0.0829 1.9895 0.0049

4 9.65 0.1036 1.9942 0.0073

5 7.72 0.1295 1.9999 0.0102

6 6.89 0.1450 2.0106 0.0156

7 6.03 0.1658 2.0164 0.0185

The depth Froude number is given by Frd = Vs/
√

gh. The co-

efficients p, m and n as defined in [58] are given below. For

finite depths, both m and n are dependant on k and have a lower

and upper limit of 0 and 1.

p =
1

Fr2
d

=
gh

V2
s

, m =
tanh kh

kh
, n =

2kh

sinh 2kh
(D.1)

a) Sub-critical range Frd < 1. The sub-critical range consists

of both the transverse and the divergent wave systems, with the

line of cusps at the crossing between the two systems. The

wave-length at cusps is obtained through iterative solution of

following equation

m(3−n) =
2

p
=⇒ tanh kh

kh

(

3 − 2kh

sinh 2kh

)

=
2gh

V2
s

, (D.2)

where k is the only unknown. Using the obtained value of k, the

half-wedge angle θK is given by

θK = cos−1

( √
8(1 − n)

(3 − n)

)

. (D.3)

With the increasing Frd, the value of θK increases, while the di-

vergent system becomes more dominant compared to the trans-

verse wave system. The critical value of Frd = 1 has the maxi-

mum θK = 90°.

The example in section 4.3 is for a disturbance moving at a

speed of Vs = 5.95m s−1 at a depth of h = 5m, corresponding

to a sub-critical depth Froude number Frd = 0.85. By solv-

ing Eq. (D.2) iteratively, we get the value of k = 0.3717m−1,

corresponding to LH = 16.9052m, n = 0.1808, resulting in

θK = 24.76° using Eq. (D.3).

b) Super-critical range Frd > 1. The super-critical range con-

sists only of the divergent wave system, while the transverse

system and the line of cusps disappear. The half-wedge angle

is given by

θK = sin−1(
√

p). (D.4)

With increasing Frd, the value of θK reduces.
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