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Abstract

The paper presents coupling between a mesh-based finite-element model for Boussinesq equations (FEBOUSS [1]) with a meshless
local Petrov-Galerkin model for the Navier-Stokes equations (MLPG R [2]) in 3D. Boussinesq equation models are widely used for
simulating wave-propagation over large domains with uneven topography using a 2D surface mesh. Mesh-less models inherently
capture large free-surface deformations and have shown promise in simulating wave-structure interaction, run-up and breaking
phenomenon. The hybrid approach in this paper assumes a 3D MLPG R sub-domain surrounded by the 2D mesh of FEBOUSS.
The coupling interface in MLPG R consists of relaxation zones that can be placed along multiple boundaries of the sub-domain for
exchanging particle velocity from FEBOUSS. This hybrid model is therefore capable of simulating directional waves, that has not
been reported previously.

The paper first presents the procedure for calculating the depth-resolved velocities in 3D from the Boussinesq model. The
resultant velocities are compared against theory, experiments and other models. The following sections present the coupling
algorithm along a single and multiple coupling interfaces in MLPG R. Validation results for this hybrid model are provided using
surface elevation and velocity measurements for regular waves, including directional cases. In general, the results from the hybrid
model are reported to have marginal over-prediction of peaks compared to purely MLPG R simulation. Finally, the interaction of a
vertical cylinder with direction regular wave is simulated using the 3D hybrid model.
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1. Introduction

Numerical modelling of wave-structure interaction is an im-
portant tool in the design, installation and operation of coastal
and offshore systems. Over decades of research, a large number
of models have been developed using various governing equa-
tions, assumptions and numerical methods. However, simula-
tion of realistic large domain problems using a single numeri-
cal model is often a compromise between prohibitive computa-
tional effort and accuracy. The physics of majority of the do-
main may be captured by potential flow assumption, while the
viscous flow may be relevant only in local regions around struc-
tures or breaking waves. Lately, significant research has been
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focused on coupling two or more numerical models to create
a hybrid approach that can enhance their individual strengths
while minimising their shortcomings. This was highlighted in
a recently concluded comparative study on modelling the in-
teraction of focusing waves with vertical cylinder [3], where
majority of the simulations involved some variation of hybrid
modelling.

The coupling methods can be broadly classified into func-
tional decomposition and domain decomposition. In the func-
tional decomposition approach, the Navier-Stokes equations are
split into two components, an irrotational part and a comple-
mentary rotational part. The irrotational equations are solved in
the complete domain. The complementary equations are solved
in the viscous regions, while assuming a zero value in the re-
maining portion. A popular example of this method relevant
to ocean engineering problems is the SWENSE model, which
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has been applied for simulating sea-keeping response of float-
ing body [4, 5].

Most commonly, the hybrid models are developed using do-
main decomposition approach, where different regions of the
domain are simulated using different models depending on the
flow characteristics. The propagation and transformation of
non-breaking waves over large domains is usually modelled us-
ing potential flow models. These include fully-resolved non-
linear potential theory (FNPT) models such as QALE-FEM
[6], IITM-FNPT [7], OceanWave3D [8]; or depth-averaged
Boussinesq-type equations models such as FUNWAVE [9],
COULWAVE [10]; or nonlinear shallow-water equation mod-
els such as SWASH[11]; or spectral methods such as HOS [12]
and enhanced spectral boundary integral method (ESBI) [13].
On the other hand, a three-dimensional dynamic viscous flow
in region around structures or breaking waves should be simu-
lated using Navier-Stokes models. These include Eulerian two-
phase model OpenFOAM [14] for laminar or turbulent flows
based on RANS, and LES based turbulence models [15, 16]
applied to ocean engineering. The viscous flow can also be
modelled using Lagrangian single-phase models such as SPH
[17, 18], MLPG R [19, 2] and MPS [20]. Many of these mod-
els have been used in contemporary literature for developing
hybrid models, as listed in Table 1. Alternatively, the Lattice
Boltzmann (LB) method treats the fluid as field of particle dis-
tribution functions [21], capable of efficient parallel implemen-
tation [22]. The LB method was coupled with boundary ele-
ment method based FNPT for simulating breaking solitary wave
in [23].

Apart from the constituent models, the unique characteris-
tics of a hybrid model are dependent on the coupling interface.
The coupling interface is the region for transferring information
between the two models. One zone is considered to be mod-
elled by Navier-Stokes equation. The other zone may be mod-
elled using fully non-linear potential theory (FNPT), weakly
non-linear potential theory, Boussinesq equations or nonlinear
shallow water equation (NSWE). This paper is primarily con-
cerned with one-way coupling, where the wave information is
given from other models to the Navier-Stokes model. Further,
it is assumed that the waves within the coupling interface are
non-breaking. It should be noted that there may be differences
in the numerical solution of the same wave between various
models. This is especially true for the wave-kinematics. For
example, the wave-kinematics obtained from a FNPT model
and a Navier-Stokes model may only have a marginal difference
for non-breaking waves. However, the wave kinematics for
a steep wave obtained using a perturbation-method based for-
mula from a depth-integrated Boussinesq equation model such
as FEBOUSS (see section 3.1), may have significant differences
compared to a Navier-Stokes model. Further, the Navier-Stokes
zone may contain structures that influence the incoming wave
and may require to be treated by the coupling interface. There-
fore, in order to maintain the consistency of the combined so-
lution, different coupling interface algorithms have been devel-
oped depending on the models.

Following the classifications in [24] and [25], the coupling
interface approaches can be categorised as moving or station-

ary boundary wall, overlapping relaxation zone or open bound-
ary condition, as shown in Fig. (1). Table 1 lists a few refer-
ences where each method has been applied. A fixed bound-
ary is usually applied between two fixed-mesh (Eulerian) mod-
els, where wave information is passed through Dirichlet bound-
ary condition, usually for both velocity and pressure govern-
ing equations. This type of coupling interface may be present
along a number of domain boundaries. The use of self-adaptive
wave generation methods allows active absorption of reflected
waves generated by the presence of structures [26]. A 2D hy-
brid model using this approach was presented in [27], with
two-way coupling using a single fixed boundary between finite-
difference models for 1DH Boussinesq equation and 2D Navier-
Stokes equation.

Alternatively, a moving boundary may be required for cou-
pling a mesh-based model with a particle-based model. In vari-
ations of this approach, the boundary may be moved using only
horizontal or all components of the flow velocity. This inter-
face is usually applied along one boundary [30], but it may be
applied along two non-intersecting boundaries, as done in [29]
in a 2D domain. However its implementation in 3D with in-
tersecting moving boundaries will be challenging. Further, as
described in [29], this method uses changes in local particle-
number density in the vicinity of the moving boundary for driv-
ing the wave and hence can only be used in particle-based meth-
ods using density-invariant or weakly compressible forms of
the pressure Poisson equation (PPE) (see section 2.2). It should
be noted, [29] also reports that this mechanism is responsible
for the noise in the wave-kinematics obtained from the hybrid
model. When applied to divergence-free forms of PPE, this
method leads to ’leakage’ of particles as reported in [33]. Fi-
nally, this approach too cannot absorb a reflected wave in one-
way coupling.

The relaxation zone method has overlapping region where
the flow quantities are gradually ramped between the two mod-
els using a relaxation function. This method hence provides
abundant flexibility in its implementation through choice of
fixed or moving relaxation region, choice of ramping function,
size of relaxation zone and the choice of the coupled quanti-
ties. Conventionally, a flow quantity Φ in the relaxation zone
is defined by a linear combination of the solutions ΦA and ΦB

from the two models, Φ = CΦA + (1 − C)ΦB. Here, C is a
smooth relaxation function defined using polynomial or hyper-
bolic function of spatial coordinates within the relaxation zone.
Due to the presence of a relaxation zone, ideally this method
is capable of absorbing differences between the solutions from
the two models and reflections from structures. However, sim-
ilar to a sponge layer, a certain amount of re-reflection from
the relaxation region should be expected, which can be min-
imised through tuned choice of relaxation function and size of
the relaxation zone [32]. Further, the flow within the relaxation
zone is not expected to satisfy the governing equations of either
model. For example, if the models being coupled are incom-
pressible, individually the divergence of velocity will be equal
to zero for both of them. However their combined velocity vec-
tor within the relaxation zone may have non-zero divergence.
Further, this value will be proportional to the difference in their
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Table 1: Table listing examples for various implementations of coupling interface in contemporary literature.

Reference Coupling
Interface

Model
Other

Model
Navier-Stokes

1
Sitanggang and
Lynett (2009)
[27, 28]

Boundary
Fixed Boussinesq-1D

Mesh Eul, FDM

RANS
2D
Mesh Eul, FDM

2 Verbrugghe et al.
(2018) [29]

Boundary
Moving

OceanWave3D
FNPT
Mesh Eul, FDM

SPHysics
2D
Particle Lag, SPH

3 Narayanaswamy
et al. (2010) [30]

Boundary
Moving

FUNWAVE
Boussinesq-1D
Mesh Eul, FVM-FDM

SPHysics
2D
Particle Lag, SPH

4 Wang et al.
(2020) [31]

RZ
Fixed

QALE-FEM
FNPT-3D
Mesh Eul-Lag, FEM

OpenFOAM
3D
Mesh Eul, FVM-FDM

5 Altomare et al.
(2018) [32]

RZ
Fixed

SWASH
NSWE-1D
Mesh Eul, FDM

DualSPHysics
2D
Particle Lag, SPH

6 Sriram et al.
(2014) [24]

RZ
Moving

IITM-FNPT
FNPT-2D
Mesh Eul Lag, FEM

2D
Particle Lag, MLPG R

7 Agarwal et al.
(2021) [2]

RZ
Moving

IITM-FNPT
FNPT-2D
Mesh Eul Lag, FEM

3D
Particle Lag, MLPG R

8 Ni et al.
(2020) [25]

OBC
Fixed NSWE

Mesh Lag, SPH
2D
Particle Lag, SPH

RZ = Relaxation zone, OBC = Open boundary condition
FNPT = Fully non-linear potential theory, NSWE = Nonlinear shallow water equation
Eul = Eulerian, Lag = Lagrangian
FDM = Finite difference method, FVM = Finite volume method
FEM = Finite element method, SPH = Smoothed particle hydrodynamics
MLPG R =Meshless local Petrov-Galerkin

velocities and the gradient of the relaxation function, as shown
in the following equation.

u⃗ = Cu⃗A + (1 −C)u⃗B (1a)

∇ · u⃗ = ∇C ·
(
u⃗A − u⃗B

)
assuming∇ · u⃗A = 0, ∇ · u⃗B = 0

(1b)

Finally, multiple relaxation zones can be placed along intersect-
ing boundaries or even inside a domain, making this method
convenient for a 3D application.

The work in [31] presents one-way coupling between a
meshed 3D FNPT and meshed 3D Navier-Stokes model with
fixed relaxation zones along three boundaries using a polyno-
mial relaxation function and all components of velocity u⃗ and
pressure. On the other hand [32] uses a single fixed relaxation
zone with hyperbolic relaxation function and only horizontal
velocity as a wave-making condition in a particle-based model

with input from nonlinear SWE. The work in [32] has presented
a detailed analysis on performance of the relaxation zone in ab-
sorbing the reflection of various regular waves by varying the
coefficients of the hyperbolic relaxation function and size of the
relaxation zone. A two-way coupling in 2D [24] and one-way
coupling in 3D [2] between a meshed FNPT and particle-based
MLPG R models were implemented using a single moving re-
laxation zone with a cubic relaxation function. In these works
all components of u⃗ and pressure were used for coupling due to
the excellent agreement between the solvers for non-breaking
waves. A open boundary condition was proposed in [25] for
inlet and outlet of waves in particle-based SPH. This method
was used for coupling SPH in 2D with a shallow-water model.
The approach relies on creation and deletion of particles in a
buffer zone and does not require a gradual ramping of the so-
lution in the coupling interface. However, similar to the mov-
ing boundary approach, this method may not be applicable to
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Figure 1: Schematic showing various implementations of coupling interface in contemporary literature for transferring waves from domain A to domain B modelled
by different equations and different numerical methods. Please refer to Table 1 for examples of each approach in the contemporary literature.

divergence-free form of PPE. These few examples demonstrate
the versatility of relaxation zone methods in hybrid modelling.

The literature currently lacks three-dimensional coupling be-
tween a mesh-based Boussinesq equation model and a mesh-
less Navier-Stokes model. These two categories of models have
significantly different formulations. Due to this, its fairly chal-
lenging to couple these two models, but it provides an oppor-
tunity for combining distinctly different strengths and minimis-
ing their major weaknesses for practical application. This work
presents one-way 3D coupling between a Boussinesq equation
model, named FEBOUSS [1] and a mesh-less Navier-Stokes
model, referred to as MLPG R [2, 34] in this manuscript.
FEBOUSS is a finite-element model for depth-integrated form
of Boussinesq equation. Models in this category can capture
the 3D wave-transformation using a 2D surface mesh, thus en-
abling efficient analysis of wave transformation over large do-
mains. However, they cannot be directly applied for viscous
flow around 3D structures and wave-breaking. The mesh-less
MLPG R model solves the Lagrangian form of governing equa-
tions [34]. Here the domain is discretised using moving par-
ticles, and thus it can directly capture a moving free-surface.
However, the computational cost of this method limits its wide-
spread application. The proposed hybrid model will simu-
late majority of the domain using FEBOUSS, with local sub-
domain of MLPG R in the vicinity of structures. This approach
can enable simulation of realistic problems using particle-based
method.

The paper briefly presents the governing equations and nu-
merical formulation for both FEBOUSS and MLPG R mod-
els. Section 3.1 describes calculation of depth-resolved veloc-

ities from the depth-integrated results of FEBOUSS. The fol-
lowing section 3.2 presents the construction of the coupling in-
terface within the MLPG R sub-domain using relaxation and
buffer zones to enable consistent 3D transfer of velocities from
FEBOUSS. These developments are investigated using a num-
ber of numerical tests. Section 4.1 present a comparison of
depth-resolved quantities from FEBOUSS against theoretical
and other numerical results. This is crucial for determining
and justifying the choice of variables to be transferred in the
coupling interface. The algorithm is further validated against
experimental results on depth-resolved velocity under waves
passing over a submerged bar in section 4.2. The hybrid model
is then tested for wave-input from FEBOUSS to MLPG R sub-
domain using single and two coupling interfaces in section 4.3.
It investigates the required setup and compares the results for
surface elevation and velocities from the hybrid model against
purely FEBOUSS and purely MLPG R results. Similar anal-
ysis is further carried out for the directional wave case in sec-
tion 4.5. Building upon the inferences from these trials, the
final section 4.6 applies hybrid model for simulating interac-
tion of a directional regular wave with a vertical cylinder, and
presents a comparison for pressure and wave probes against
purely MLPG R and experimental results.

2. Governing Equations

The three dimensional numerical domain is defined on a
Cartesian coordinate system, OXYZ, with z = 0 at mean-sea
level and the Z axis positive along the vertically upward direc-
tion. The depth-integrated Boussinesq equation model spans
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the domain in the XY plane.

2.1. Boussinesq equation model: FEBOUSS

The model is based on Madsen and Sorensen’s form of
Boussinesq equations for slowly varying bathymetry, as pre-
sented in [35]. The flow is assumed to be irrotational, incom-
pressible and inviscid. This depth-integrated form is weakly-
nonlinear and weakly-dispersive, with excellent shoaling and
linear dispersion characteristics for waves up to kh = 3. Here
k = 2π/L is the wave number, h is the still water depth and
L is the wave-length. These equations can model 3D wave-
transformation in intermediate and shallow depths using a 2D
surface mesh, making this a computationally efficient approach
for large domains. This category of equations are also referred
to as two-dimensional horizontal (2DH) models. Eq. (2) is the
complete governing equation, where Eq. (2a) is the continu-
ity equation, and Eqs. (2b) and (2c) are the X and Y momen-
tum equations, respectively. The variables here are still water-
depth h, surface-elevation η, total water depth d = η+ h, depth-
integrated velocity P =

∫ η

−h ux dz and Q =
∫ η

−h uy dz along X and
Y axis respectively, acceleration due to gravity g and density
of water ρ. The additional terms Ψ1 and Ψ2 in the momen-
tum equations are the high-order dispersive terms defined by
Eqs. (3a) and (3b) respectively. Here ω is an auxiliary vari-
able governed by Eq. (3c), which is required for resolving the
third-order spatial derivatives of η. Finally, τ1, τ2 are the bottom
shear stress terms defined by the quadratic friction law. For fur-
ther details regarding the governing equations, please refer to
[36].

∂η

∂t
+
∂P
∂x
+
∂Q
∂y
= 0 (2a)

∂P
∂t
+
∂

∂x

(P2

d

)
+
∂

∂y

(PQ
d

)
+ gd

∂η

∂x
+ Ψ1 +

τ1

ρ
= 0 (2b)

∂Q
∂t
+
∂

∂x

(PQ
d

)
+
∂

∂y

(Q2

d

)
+ gd

∂η

∂y
+ Ψ2 +

τ2

ρ
= 0 (2c)

Ψx = −

(
B +

1
3

)
h2

(
∂3P
∂x2t

+
∂3Q
∂xyt

)
− h

∂h
∂x

(1
3
∂2P
∂xt
+

1
6
∂2Q
∂yt

)
−h

∂h
∂y

(1
6
∂2Q
∂xt

)
− Bgh2 ∂w

∂x

(3a)

Ψy = −

(
B +

1
3

)
h2

(
∂3P
∂xyt

+
∂3Q
∂y2t

)
− h

∂h
∂y

(1
6
∂2P
∂xt
+

1
3
∂2Q
∂yt

)
−h

∂h
∂x

(1
6
∂2P
∂yt

)
− Bgh2 ∂w

∂y

(3b)

ω =
∂

∂x

(
h
∂η

∂x

)
+
∂

∂y

(
h
∂η

∂y

)
(3c)

The finite element model is constructed on an unstructured
mesh of irregular triangles. We use a mixed formulation, with

linear shape function for η and ω, and quadratic shape func-
tion for P and Q. This use of unequal order basis functions
is required for avoiding spurious oscillations in the solution
[36]. The weak form is evaluated using the standard Galerkin
method. The expressions for elemental integrals are calculated
analytically using symbolic computation in Mathematica [37],
instead of the tradition Gauss quadrature approach. The time-
marching is implemented at a constant time-step using Runge-
Kutta 4th order scheme (RK4) due to its low truncation error
O(∆t5). This time-step is prescribed using the Courant num-
ber Cou = max{ ∆t

∆r

√
gh}, where a condition of C ≤ 1 is usu-

ally sufficient for a stable simulation. The final discretised set
of algebraic equations is solved using an iterative bi-conjugate
gradient stabilised solver (BiCGStab) for sparse matrices.

The domain boundaries in the model can be slip walls, where
Pn = Pnx + Qny; or no-slip walls, where P = 0,Q = 0. Fur-
ther, waves in the domain can be generated from a boundary
using the Dirichlet method, where the Fourier series solution
for Boussinesq equations at constant depth in 1D [38] is used
for prescribing the η, P and Q velocity time-series. Finally, the
outgoing waves are absorbed using Newtonian cooling based
sponge layers. For complete details regarding the FEM formu-
lation and boundary conditions, please refer to [1].

This model, named FEBOUSS, was validated against the
standard Whalin shoal [39] test for non-linear refraction and
diffraction of regular waves over the semi-circular shoal in [1]
through wave-elevation measurements. The model was also
tested against the Berkhoff shoal [40] bathymetry, which con-
sists of an angled shoal with an ellipsoidal hump. The valida-
tion was done in [41] through wave-height measurements along
various sections downwind of the ellipsoid. The model was
applied for simulating flow of solitary waves through porous
breakwaters in [41]. Further, FEBOUSS was extended for sim-
ulating ship-generated waves, through the implementation of a
moving pressure field. This was presented and validated in [1]
against field measurements of waves generated by fast-moving
ferries in Tallinn bay, Estonia. In this hybrid modelling work,
FEBOUSS will be used for the generation and propagation of
waves over large distances with variable bathymetry, where the
flow is largely potential.

It should be noted that the weakly dispersive governing equa-
tion in FEBOUSS limit its application to intermediate water-
depth kh = 3. Further, the results in [42] highlight the limitation
of weakly dispersive Boussinesq models in replicating focusing
waves, especially with a wide-band spectrum. However, these
models are still applicable to the wide range of near-shore and
coastal applications. The limitations of weakly dispersive mod-
els have been addressed by high-order and multi-layer forms of
Boussinesq equation. The resultant models can offer improved
nonlinear properties and provide inherent expressions for ver-
tical variation of quantities, for waves ranging from shallow to
deep water-depths. For example, [43] formulated a 1DH two-
layer Boussinesq model that can provide accurate wave-wave
interaction and horizontal and vertical velocities up-to kh=23.2.
The finite difference model for its 1DH form was presented
in [44]. Another recent example is the multi-layer approach
in [45], which formulates the depth-integrated equations in σ-
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coordinate system and uses the Galerkin or sub-domain method
to minimise the residual in the momentum equation. However,
the extension of these models to 2DH is lengthy, introduces ad-
ditional governing equations and would require further research
for a stable finite-element formulation. Therefore, the analysis
in this manuscript will be limited to intermediate water-depth,
as per the constraints of FEBOUSS.

2.2. Navier-Stokes model: MLPG R

The Navier-Stokes equation for incompressible laminar flow
in Lagrangian form in a three-dimensional domain Ω is given
by Eq. (4), where Eq. (4a) is the continuity and Eq. (4b) is the
momentum governing equation. Here u⃗ = uî + v ĵ + wk̂, where
the velocity vector u⃗ has components u, v,w. Further, p is the
pressure, ρ is the fluid density, ν is the kinematic viscosity of
the fluid and g⃗ = −9.81k̂ is the body force vector.

∇.u⃗ = 0 in Ω (4a)

Du⃗
Dt
=
−∇p
ρ
+ g⃗ + ν∇2u⃗ in Ω (4b)

This governing equation is solved using the projection
scheme to decouple the pressure gradient and momentum equa-
tion. Given the values of flow velocity u⃗n at time-step n are
known, the first step is to remove the pressure gradient term
from the momentum equation to obtain the intermediate veloc-
ity u⃗∗ by Eq. (5a). Once the pressure has been calculated, the
flow velocity u⃗n+1 at next time-step n+1 can be recovered using
the corrector equation Eq. (5b). The governing pressure Pois-
son equation (PPE) Eq. (6) is obtained by taking the gradient of
Eq. (5b) and using the continuity equation Eq. (4a). In contem-
porary literature, Eq. (6) is often referred to as the divergence-
free form. Alternatively, several incompressible particle based
methods use a density-invariant form [46] of the PPE that uses
the local particle-number density instead of intermediate veloc-
ity.

u⃗∗ = u⃗n + ∆t
(
g⃗ + ν∇2u⃗n

)
in Ω (5a)

u⃗n+1 = u⃗∗ − ∆t
1
ρ
∇pn+1 in Ω (5b)

∇2 pn+1 =
ρ

∆t
∇.u⃗∗ in Ω (6)

We model these equations using the meshless local Petrov-
Galerkin with Rankine source method (MLPG R) [34]. This is
a particle based method where the numerical domain is spatially
discretised using nodes moving at flow velocity. Therefore,
this method can inherently capture the moving free-surface and
avoids the convection terms in the momentum equation. The
sequence to be followed for numerical solution is a) the calcula-
tion of the intermediate velocity u⃗∗ using Eq. (5a), b) the calcu-
lation of pressure pn+1 using Eq. (6), c) the correction of veloc-
ity to get u⃗n+1 using Eq. (5b), d) updating the node position as

per r⃗n+1 = r⃗n + u⃗n+1∆t. In this model, the intermediate and cor-
rection equations Eqs. (5a) and (5a) are solved in ’strong’ form,
where the spatial gradients are calculated using the simplified
finite-difference interpolation (SFDI) method [19]. However,
MLPG R is unique in solving the pressure Poisson equation in
’weak’ form among the meshless methods.

∫
ΩI

ψ∇2 p dΩ =
ρ

dt

∫
ΩI

ψ∇.u⃗∗ dΩ (7a)

=⇒

∫
ΓI

λ⃗I .(p∇ψ) dΓ − RI p =
ρ

∆t

∫
ΩI

u⃗∗.∇ψ dΩ (7b)

=⇒
1
6

(p1 + p2 + p3 + p4 + p5 + p6) − p0

=
ρ

∆t
RI

12

(
u∗1 − u∗3 + v∗2 − v∗4 + w∗5 − w∗6

) (7c)

For a numerical node I, the weak form is evaluated in a lo-
cal spherical sub-domain ΩI , of radius RI , with boundaries ΓI ,
and having outward unit normal λI . Eq. (6) is multiplied with
Rankine source test function ψ [34] and integrated over the sub-
domain ΩI to obtain the weak-form Eq. (7a). By using the
Gauss theorem, Eq. (7a) can be reduced to Eq. (7b), as shown
in [34]. This operation removes the derivative operator from the
unknown quantities p and u⃗∗, and also converts the domain in-
tegral to surface integral for the pressure term. Finally through
the use Taylor series, Eq. (7b) can be reduced to algebraic form
Eq. (7c) with error O(R4

I ), resulting in a semi-analytical inte-
gration, as shown in [2]. Here, the subscripts in Eq. (7c) denote
the values at various locations on the sphere of integration. The
details regarding the weak-form and semi-analytical integration
are presented in [2].

n⃗.∇p = ρ
(
n⃗.g⃗ − ˙⃗U.⃗n + n⃗.(ν∇2u⃗)

)
on Γw (8a)

u⃗.⃗n = U⃗ .⃗n on Γw (8b)

The three-dimensional numerical domain is bound by three
types of boundary conditions (BC), a) wave-maker Γwm b) free-
surface Γ f s c) wall Γw. The wave-making BC was implemented
in [2] using FNPT input. The free-surface BC, defined by
p = 0 on Γ f s, is applied as Dirichlet BC to the pressure Pois-
son solver. An accurate detection of the free-surface nodes
is required to avoid noise in the pressure solution. This was
discussed and implemented in [2] using a summated unit vec-
tor method for the three-dimensional domain. The wall BC
is defined by Eq. (8), where the gradient in the pressure wall
BC Eq. (8a) is evaluated using the SFDI method. Finally, the
wall BC for velocity, given by Eq. (8b), is implemented using
moving side-wall method for the tangential side-walls of the
domain, and ghost-mirror particle method for the bluff body
boundaries. These techniques are necessary for capturing small
amplitude components of focusing waves and are discussed in
detail in [2]. Further, the work in [2] also reports convergence
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and mass conservation of the order of 10−3 through the simula-
tion of fixed cylinder interacting with steep-focusing waves.

The MLPG R method has been applied to simulate a vari-
ety free-surface flows. It was used for studying the interac-
tion of regular waves with a floating body along with green-
water impact in 2D in [47]. This was extended further to sim-
ulate the interaction of focusing waves with two fixed bodies
in 2D in [48]. With the inclusion of porosity, the attenuation
of regular waves over vegetation was simulated in [49]. The
2D MLPG R model was coupled with a fully nonlinear po-
tential theory (FNPT) model for simulation of breaking waves
[24]. This hybrid model was used for simulating run-up of long
waves in [50] and impact of breaking waves on elastic wall in
[51]. Finally, the MLPG R model in 3D was validated against
experimental results for interaction of cylinder with focusing
waves in [2, 33]. A complete review of various applications
of MLPG R model is done in [52]. In this paper, the coupling
of 3D MLPG R with FEBOUSS can enable its application to
practical scale problems.

3. Coupling Algorithm

The primary objective of this paper is one-way coupling of
FEBOUSS with MLPG R in three-dimension. This requires the
understanding of two key questions, 1) transfer of variables be-
tween the two models 2) ensuring consistency of the solution
during coupling. The following sub-sections describe the im-
plementation of coupling algorithm while addressing these key
perspectives.

3.1. Calculation of depth-resolved velocities from FEBOUSS
The two models FEBOUSS and MLPG R solve for differ-

ent variables. FEBOUSS is a 2DH model which returns the
depth-integrated velocities P, Q on a XY plane and surface el-
evation η. On the other hand, MLPG R is a 3D model which
solves for the flow velocities u⃗ = u î + v ĵ + w k̂ and pressure
p in the XYZ domain. Therefore, in order to instantaneously
transfer flow variables from FEBOUSS to MLPG R, we need
to calculate 3D depth-resolved velocities and pressure from the
2DH depth-integrated Boussinesq equations. This requires an
explicit expression for depth-resolved quantities in terms of the
depth-integrated quantities. The expression will contain high-
order spatial derivatives, which are evaluated at the solution
nodes and may pose a numerical challenge. This aspect was dis-
cussed in [53], where the reconstruction of the velocities from
a depth-averaged solution using a finite-difference approach re-
quired use of low-pass filtering methods to minimise the noise
in the second-order spatial derivative. As shown in section 4.2,
such filtering may adversely influence the accuracy of the re-
sult. Further, unlike the 2D coupling in contemporary liter-
ature [28, 29, 30, 54], the 3D coupling as attempted in this
work would require calculation of cross-derivatives. The pre-
sented work addresses this numerical complexity by employing
a meshless approach for evaluating depth-resolved velocity at
the FEM nodes.

For a 2D problem, the vertical structure of horizontal velocity
u was derived in [55] through perturbation method, resulting in

the expected parabolic expression given by the following equa-
tion.

u = ū +
(

h2

6
−

z2

2

)
∂2

∂x2 (ū) −
(

h
2
+ z

)
∂2

∂x2 (ūh) (9)

Here z = 0 at mean seal level and ū = P
h+η . The expression was

derived by retaining terms with order lower than O(ϵ2µ, ϵµ2),
where ϵ = a/h and µ = h/L are the non-linearity and dispersion
parameters respectively, for a characteristic wave-length L and
amplitude a. For a 3D problem, this expression was extended
in [55] using ∇h =

∂
∂x î + ∂

∂y ĵ, resulting the expressions for u

and v given by Eqs. (10a) and (10b). Here ū = P
η+h î+ Q

η+h ĵ. The
expressions for w given by Eq. (10c) and pressure p given by
Eq. (10d) can now be obtained using the continuity equation for
irrotational flow and the Z momentum equation, while retaining
terms with order lower than O(ϵ2µ, ϵµ2).

u =
P

h + η
+

(
h2

6
−

z2

2

)
∂

∂x
(∇h · ū)−

(
h
2
+ z

)
∂

∂x
(∇h · ūh) (10a)

v =
Q

h + η
+

(
h2

6
−

z2

2

)
∂

∂y
(∇h · ū)−

(
h
2
+ z

)
∂

∂y
(∇h · ūh) (10b)

w = − ∇h · ūh − z(∇h · ū) −
zh
3

(∇hh · ∇h(∇h · ū))

+
z
2

(∇hh · ∇h(∇h · ūh))

−
z
6

(
h2 − z2

)
(∇h · ∇h(∇h · ū))

+
z
2

(h + z) (∇h · ∇h(∇h · ūh))

(10c)

p = ρg (η − z) + ρz
∂

∂t

(
∇h · ūh +

z
2
∇h · ū

)
(10d)

Hence for a point S (x, y, z) in the XYZ domain, the calcula-
tion of depth-resolved quantities would require up-to third order
spatial derivatives of the Boussinesq solution ū = P

η+h î + Q
η+h ĵ

at location (x, y) in the XY plane. This is implemented through
Algorithm 1, using moving least squares (MLS) [56] for cal-
culation of the spatial-derivatives at the FEM nodes and FEM
shape function for interpolation within a triangular element. It
should be noted that a numerically expensive portion of the
MLS method is the construction of the domain of dependence,
which requires a search for the neighbouring nodes. In Algo-
rithm 1, MLS is used for evaluating spatial derivatives only at
the FEM nodes. Hence the domain of dependence for each node
can be constructed just once, before the time-stepping proce-
dure, using the FEM linked-list. As a consequence, Algorithm
1 requires minimum additional computational effort during the
time-marching process. The MLS coefficients are calculated
using linear polynomial basis function and bi-quadratic weight
function. No additional filtering was applied on the high or-
der spatial derivatives. It should be noted that the mesh size of
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Figure 2: Top view of schematics showing various possible configurations of the coupling interface in the MLPG R domain. It also highlights the relative initial
positions of the CPL0, CPL1 relaxation zone and CPL2 buffer zone nodes.

FEBOUSS will impact the coupling algorithm in two ways, 1)
the solution of surface-elevation η and depth-integrated veloci-
ties (P,Q) from the finite-element model, and 2) the vertical re-
construction of depth-resolved velocities (u, v,w) and pressure
p using Algorithm 1.

The calculation of time-derivative in Eq. (10d) is carried out
using three-point backward differencing method. Alternatively,
the time-derivative can also be calculated using a central differ-
ence method. However, the latter would require calculation of
FEBOUSS solution a few time-steps ahead of the MLPG R so-
lution for the coupling procedure. As the differencing schemes
are dependent on the size of the time-step, the time-derivative
and hence the pressure will depend on the simulation time-
step. The relative difficulty in accurately calculating the time-
derivative is evident in the damped dynamic pressure for deeper
waves in section 4.1. This is one of the key-reasons why the
coupling procedure Algorithm 2 was implemented without us-
ing pressure information.

Algorithm 1.
To compute depth-resolved quantities in FEBOUSS at an arbi-
trary point S (x, y, z)

0. Values of P, Q, η known at time-step tn−1.
1. Compute P, Q, η at time-step tn using FEM and RK4 time-

marching.
2. Calculate ∇h.ū, ∇h(∇h.ū), ∇h · ∇h(∇h.ū), ∇h.ūh, ∇h(∇h.ūh)

and ∇h · ∇h(∇h.ūh) using MLS at all FEM nodes.
3. Find the triangle encompassing the (x, y) coordinates of

point S using the method of cross-products.
4. Compute the values of derivatives of ū at the (x, y) using

the nodal values and FEM shape function of the encom-
passing triangle.

5. Compute u, v, w and p at point S (x, y, z) using Eq. (10).

3.2. Coupling interface

The discussion in the introduction section 1 is used for de-
termining the appropriate coupling interface for one-way cou-
pling of FEBOUSS with MLPG R. The flow in the coupling
interface is assumed to be non-breaking and non-viscous. The
depth-resolved velocities from FEBOUSS are determined us-
ing a perturbation-method based formula, which will have re-
duced consistency with the MLPG R velocities, especially for
steeper waves. Further, as shown in section 4.1, the accuracy
of depth-resolved pressure obtained from this method is poor,
due to the requirement of the time-derivative. Therefore, we
will only use the horizontal components of velocity for cou-
pling. Additionally, the coupling in 3D may require various
combinations of intersecting coupling interfaces as shown in
Fig. (2). Here, the single coupling interface is primarily for
wave-inlet into the MLPG R domain, while the two coupling
interfaces can be used as inlet and outlet. The four intersecting
or cylindrical coupling interfaces are ideal for truly 3D case,
where they are encompassing the complete domain. The mov-
ing relaxation zone method provides the required flexibility for
meeting the above-mentioned requirements. It can numerically
ramp the solution between the two solvers and absorb the dif-
ferences due to presence of structures in the MLPG R domain.

The nodes in MLPG R domain are classified into three cat-
egories, CPL0, CPL1 and CPL2, as shown in Fig. (2). The
CPL0 nodes form the inner domain and are purely driven by
the MLPG R solution. The CPL1 nodes form the relaxation
zone region, which are driven by a combined solution, Φ =
CΦF + (1 − C)ΦM . Here, ΦF and ΦM are the horizontal com-
ponents of velocity u, v from FEBOUSS and MLPG R respec-
tively. The variable C, defined by Eq. (11), is the hyperbolic re-
laxation function from [32]. As per the conclusions in [32], the
head of the relaxation function (region around to C = 1) has a
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larger contribution in wave-generation, while a long tail is nec-
essary for wave-absorption. The parameters α and β in Eq. (11)
can hence be used for controlling the shape of C for efficient
coupling. The variable xr in Eq. (11) is the non-dimensional
position of a point in the relaxation zone of width WRZ . The
value of xr = 0 indicates purely FEBOUSS and xr = 1 in-
dicates purely MLPG R solutions. For intersecting relaxation
zones, the xr is calculated with respect to the closest boundary.
We define the relaxation zone and C using the position of nodes
at the zeroth time-step.

C(xr, α, β) =
tanh ((xr + α) β) − tanh ((xr − α) β)

tanh(αβ) − tanh(−αβ) − tanh((1 + α)β) + tanh((1 − α)β)

−
tanh ((1 + α) β) − tanh ((1 − α) β)

tanh(αβ) − tanh(−αβ) − tanh((1 + α)β) + tanh((1 − α)β)
for xr ∈ [0, 1]

(11)

CPL2 nodes are buffer nodes, which serve the function of
completing the domain of dependence [52] for the MLPG R so-
lution of the CPL1 nodes. This procedure prevents partial sub-
domains in the meshless solution. Their horizontal components
of velocity u, v are driven purely by FEBOUSS solution, hence
making them consistent with the CPL1 nodes having C = 1.
However their vertical position is re-adjusted using the highly
accurate surface elevation η solution from FEBOUSS. Similar
to CPL1 nodes, these nodes are classified using their position at
the zeroth time-step. Both the FEBOUSS and MLPG R mod-
els are solved using the same time-step ∆t. Based on the results
from [1] and [2], the MLPG R model will require a smaller
spatial resolution (L/100) compared to FEBOUSS (L/25) for
capturing the same wave-length L. Therefore, the time-step ∆t
for the coupled model will be limited by the stability condition
for MLPG R. It will require a Courant number Cou ≈ 0.5 in
the MLPG R sub-domain [2], resulting in Cou ≈ 0.12 in the
FEBOUSS domain. The implementation of the coupling pro-
cedure is described in Algorithm 2.

Algorithm 2.
Implementation of coupling interface in MLPG R for input
from FEBOUSS.

0. Solution of FEBOUSS and MLPG R at time-step tn−1 are
known.

1. Compute the solution of FEBOUSS at time-step tn.
2. Follow Algorithm 1 for computing depth-resolved veloc-

ity u⃗F
n at tn from FEBOUSS at all CPL1 and CPL2 node

positions.
3. Compute intermediate velocity u⃗∗ for MLPG R nodes us-

ing Eq. (5a).
4. Evaluate the pressure pn at tn by solving the pressure Pois-

son equation Eq. (6)
5. Calculate the velocity u⃗M

n at tn using Eq. (5b) for MLPG R
nodes.

Figure 3: Plot adapted from [57] depicting the various regular wave cases tested
in this manuscript. Here h/gT 2 is the normalised water-depth and H/gT 2 is the
normalised wave-height. The original figure classifying the regions of validity
for various theories is sourced from Wikimedia Commons [58], the free media
repository.

6. For CPL1 nodes, use the relaxation function C to update
only the horizontal components u, v of velocity using Φ =
CΦF + (1 −C)ΦM , resulting in the final u⃗n.

7. For CPL2 nodes, replace the horizontal components u, v of
velocity using Φ = ΦF to obtain the final u⃗n

8. Move the MLPG R nodes using u⃗n to update their position
for time-step tn.

9. Rearrange the vertical position of CPL2 nodes using sur-
face elevation ηn at tn from FEBOUSS.

4. Numerical Results

The following sub-sections present a number of test cases for
studying the calculation of depth-resolved velocities from the
Boussinesq model. Following this, the FEBOUSS to MLPG R
coupling algorithm is analysed in various configurations. The
regular waves used in these tests are tabulated in Table 2 and
their position in the wave-regime plot is shown in Fig. (3).
Here h is the still-water depth, T is the wave-period, H is the
wave-height, L is the wave-length, kh = 2πh/L is the dis-
persion parameter, ka = (2π/L)(H/2) is the non-linearity pa-
rameter, Ur = (HL2)/h3 is the Ursell’s parameter and finally
h/gT 2 and H/gT 2 are the normalised water-depth and wave-
height respectively. The presented manuscript will only study
regular wave test cases to analyse the error in the calculation
of depth-resolved velocity from FEBOUSS, and subsequently
identify the associated impact on the MLPG R particle distri-
bution within the coupling interface and the accuracy of the
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Table 2: Table listing the specifics for each regular wave in the manuscript.

Name h T H L kh ka Ur h
gT2

H
gT2

(m) (s) (m) (m) 10−2 L2H
h3 10−2 10−3

N1 0.50 4.00 0.03 8.6729 0.36 1.09 18.05 0.32 0.19

N2 1.00 3.00 0.10 8.6929 0.72 3.61 7.56 1.13 1.13

N3 1.00 2.00 0.08 5.2153 1.20 4.82 2.18 2.55 2.04

N4 1.00 1.50 0.06 3.3514 1.88 5.62 0.67 4.53 2.72

E1 0.86 1.50 0.06 3.2653 1.65 5.77 1.00 3.89 2.72

E2 0.70 2.00 0.10 4.6236 0.95 6.79 6.23 1.78 2.55

Table 3: Table listing regular mesh configuration used by FEBOUSS for simu-
lation of regular waves in a rectangular tank with constant depth.

Name ∆x ∆t L/∆x T/∆t Cou

(m) (s) ∆t
∆x

√
gh

N1 0.160 0.040 54.20 100 0.55

N2 0.160 0.030 54.33 100 0.59

N3 0.100 0.020 52.15 100 0.63

N4 0.050 0.010 67.03 150 0.62

hybrid solution against experimental, numerical and analytical
references.

4.1. Depth-resolved velocities from FEBOUSS compared
against other models

In this section, we study the calculation of depth-resolved ve-
locities from the FEBOUSS results using the Algorithm 1. This
exercise is required for identifying the appropriate variable for
coupling and their accuracy for a range of waves. We use four
regular wave cases ranging from kh = 0.3 to kh = 2 for cover-
ing shallow to intermediate depths. The details for these regu-
lar waves are listed as cases N1, N2, N3 and N4 in Table 2 and
they belong to the Stokes-2nd order theory regime, as shown in
Fig. (3). The case-N1 wave has three times the wave-height of
the test case in [27], case-N2 is from [28] and case-N3 is from
[29] (see Table 1). The comparison of FEBOUSS results will
be done against the Stokes-2nd order theoretical results and nu-
merical results from IITM-FNPT [59]. IITM-FNPT is a mixed
Eulerian-Lagrangian finite element model for fully non-linear
potential theory, which has been proven against a range of soli-
tary, regular, focusing and long-wave cases.

The simulation of each test case in FEBOUSS is done using a
rectangular domain with the specified constant depth h. The do-
main is meshed using regularly spaced nodes connected using
right-angled triangles. For the test case with wave-length L, the
FEBOUSS domain has a length of 23L, width 4h, with wave-
making BC along the left boundary, slip walls along the side
boundaries and a 3L sponge layer at the right boundary. The

simulation is executed for 25T duration for obtaining a steady
state, where T is the wave-period. Measurements of surface-
elevation and velocities were done at a distance of 5.75L to 6L
from the wave-making boundary. Trials for mesh and time-step
convergence were carried out similar to the work in [1]. How-
ever, the convergence trials are not presented in this manuscript
for brevity. Converged results for each test-case were obtained
using mesh-characteristics listed in Table 3. As per the con-
clusions of [1], a mesh size of L/25 and T/50 was sufficient
to obtain converged results for the surface elevation of regular
waves. However, owing to the high order derivatives involved
in the calculation of depth-resolved velocities, a finer mesh res-
olution of L/55 and time-step of T/100 was required to obtain
converged results for depth-resolved velocities for the majority
of the presented cases.

Fig. (4) shows the comparison of surface elevation time-
series for all for test-case. Here we can observe the nature of
each test-case. Case-N1 is a shallower depth wave (low kh)
which is highly asymmetric about the mean-sea level (high Ur).
On the other hand case-N4 is a deeper wave (high kh) with
symmetry about the mean-seal level (low Ur). With the error
in FEBOUSS being proportional to products of dispersion and
non-linearity parameters, these test-cases are well within the
applicable range for this model. FEBOUSS results are observed
to match well with the Stokes-2nd order theory and IITM-FNPT
simulation for all four test cases, where it reproduces the re-
quired asymmetry in the wave-profile. The same can be ob-
served in the comparison of depth-integrated velocity, shown in
Fig. (5).

With the confirmation of the applicability of FEBOUSS for
these cases, we now look into the Algorithm 1 for calculating
depth-resolved quantities. Fig. (6) shows the comparison of
depth-resolved profiles for the horizontal u and vertical w com-
ponents of velocity under the wave-crest. For the shallow-depth
case-N1, u has a hyperbolic profile with low decay from crest to
bottom. This profile is comfortably captured by the quadratic
expression in Eq. (10a). The w profile for case-N1 is almost
linear. We observe some variation in the peak value across the
three results, however, the FEBOUSS result matches fairly well
with IITM-FNPT. In the remaining case, with the increasing kh,
we observe an increasing decay in u along the depth. Further,
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Figure 4: Comparison of surface-elevation η time-series obtained from FEBOUSS against Stokes-2nd order theory and IITM-FNPT [59] numerical results.

the profile for w too has an increasing curvature, progressing
from linear to hyperbolic. The depth-profiles for cases N2 and
N3 are fairly reproduced by FEBOUSS. However, for case-N4,
FEBOUSS estimates a larger peak for u with a stronger de-
cay along the depth. Finally, Fig. (7) shows the comparison
for pressure time-series at a depth of z = −0.8h. We observe
a good comparison for cases N1 and N2, a poor comparison
in trough for case-N3 and highly damped dynamic pressure in
case-N4. This damping is expected due to the requirement of
the time-derivative of the gradient for pressure calculation as
per Eq. (10d).

From these results, we can draw conclusions regarding the
choice of variables for coupling with MLPG R. The surface-
elevation and depth-integrated velocity are direct solutions from
FEBOUSS, with accurate solutions till intermediate depths.
The vertically reconstructed velocity and pressure are post-
processed from FEBOUSS solution, introducing additional er-
ror from the assumptions in the derivation of Eq. (10) and the
numerical calculation of derivatives. Among these variables, it
is observed that depth-resolved horizontal components of ve-
locity have reasonable accuracy up to kh = 2, while the depth-
resolved pressure has a damped dynamic component for deeper
waves, primarily due to the time-derivative. Therefore, the cou-
pling will be carried out only using horizontal components of
depth-resolved velocity (u, v) and surface-elevation (η).

The procedure for coupling described in section 3.2 is based
on these conclusion. Here, the u and v components will be
used for the CPL1 relaxation zone nodes, where the flow ve-
locity will be adjusted as linear combination of FEBOUSS and
MLPG R velocities using the relaxation function C. The CPL2
nodes are primarily present to complete the domain of depen-
dence for the CPL1 nodes. Their positioning should be driven
by the wave to ensure the continuity of particles. Therefore their

horizontal position will be driven by u and v from FEBOUSS,
but their vertical position will be re-adjusted using η. The pres-
sure from FEBOUSS is not used in the coupling procedure.

4.2. Validation of depth-resolved velocities from FEBOUSS
against experiment

The numerical calculation of depth-resolved velocities from
FEBOUSS using the algorithm in section 3.1 is validated
against experimental measurements from [60]. These mea-
surements were a part of series of experiments performed by
Delft Hydraulics Laboratory for propagation of regular waves
over a submerged trapezoidal bar. The laboratory flume, as de-
scribed in [60], was 45m long and 1m wide with a still-water
depth of 0.86m. The trapezoidal bar had a slope of 1/20 to-
wards the wave-maker and a slope of 1/10 towards the wave-
absorber, with a minimum depth of 0.2m, as shown in Fig. (8).
The measurement of flow velocity was done using a 3-beam
2-component laser Doppler velocimetry system (LDV) along
various depths at x = 15.50m and x = 21.72m from the wave-
maker.

The rectangular numerical domain is 60m long and 1m wide,
with wave-maker BC along the left boundary, 10m long sponge
layer along the right boundary and slip-wall BC along the side
boundaries. The experiments were carried out for a wave with
time-period T = 1.5s and wave-height H = 0.06m, result-
ing in a wave-length of L = 3.26m with kh = 1.65 at the
wave-maker. The specifics for the regular wave and its posi-
tion in the wave-regime plot is shown with label E1 in Table
2 and Fig. (3) respectively. The domain is meshed using reg-
ularly spaced points connected by right-angled triangles. Fol-
lowing the procedures in [1], a converged result is obtained us-
ing ∆x = ∆y = 0.05m = L/65.30 and ∆t = 0.01s = T/150,
with the maximum Courant number Cou = ∆t

√
gh/∆x = 0.72.
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Figure 5: Comparison of depth-integrated velocity P time-series obtained from FEBOUSS against Stokes-2nd order theory and IITM-FNPT [59] numerical results.

The simulation was run for 60s and the comparison with exper-
iments was carried out after achieving a steady-state.

Fig. (9) shows a comparison of the numerical results against
the experimental measurements for surface-elevation η at four
probes. The numerical model successfully replicated the in-
crease in asymmetry about the mean-sea level with the de-
creasing depth along the shoal. However, a marginal over-
estimation of wave-crest near the top of the shoal can be no-
ticed. Fig. (10) shows the depth-resolved profile of the hori-
zontal velocity u under the wave-crest and wave-trough at lo-
cations x = 15.50m and x = 21.72m. Here the compar-
ison is also carried out against numerical results from [54],
in addition to the experimental results. The numerical model
in [54] uses a 1D FDM model for weakly non-linear Boussi-
nesq equation, with depth-resolved velocities calculated using
Eq. (9). We observe a fair comparison between the experimen-
tal and FEBOUSS results. The profile for wave-trough matches
well for both locations, and once again the peak velocity at
wave-crest is over-estimated. It should be noted that [54] re-
ported the requirement of smoothing the FDM solution for cal-
culation of depth-resolved velocities. Whereas, no such addi-
tional smoothing was required by the results presented from
FEBOUSS. Further, the FEBOUSS results show better agree-
ment than [54] for all four plots in Fig. (10). This example thus
demonstrates the reproduction of depth-resolved profile of ve-
locity from FEBOUSS solution.

4.3. Hybrid model: Single coupling interface
Numerical simulations were carried out using the hybrid

model, where waves were transferred from the FEBOUSS do-
main to the MLPG R domain. In the first example, we transfer
the regular wave defined by case-N2 (see Table 2), at a sin-
gle coupling interface along the left face of the MLPG R do-

main as shown in Fig. (11). Here the FEBOUSS domain and
mesh has the same specifics as mentioned in section 4.1. The
2D domain has a length of 200.00m ≈ 23L, width 4h, with
a prescribed still-water depth h, and is meshed using regularly
spaced nodes at intervals of ∆x = ∆y = 0.16m = L/54.33,
where L is the wave-length. It consists of wave-making BC
along the left boundary, slip walls along the side boundaries
and a 3L sponge layer at the right boundary.

The MLPG R sub-domain is positioned within the
FEBOUSS domain with its left corner initially at
(x, y) = (39.80m, 1.75m) as shown in Fig. (11). The MLPG R
domain has a length of 70.20m, width 0.50m and initial depth
of h = 1.00m, with the free-surface initially at z = 0m and
bottom boundary at z = −1m. A detailed convergence analysis
for modelling wave-structure interaction using MLPG R for
regular and focusing waves was carried out in [2]. Following
the procedures and conclusions of [2], converged results were
obtained using regularly spaced particles initially placed at
an interval of ∆x = ∆y = ∆z = 0.05m = h/20. The 3D
domain is bound by free-surface on the top and slip walls
along the side-boundaries and bottom boundary, and a sponge
layer of length 3L at the right face. The coupling interface
is placed along the left face of the domain. The coupling
interface consists of two types of nodes, CPL1 nodes of the
relaxation zone and the CPL2 of the buffer zone, as described
in section 3.2. They are defined using their position at the
zeroth time-step. The CPL2 nodes are located within a region
of length LC2 adjacent to the left face, while the CPL1 nodes
are in a region of length LC1 as shown in Fig. (11).

The CPL2 nodes serve the function of completing the inte-
gration sub-domain for the CPL1 nodes. Therefore 4 layers
of these nodes was found to be sufficient, thus fixing LC2 =

4∆x = 0.20m. We tested various lengths LC1 of the relaxation
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Figure 8: Plots for the depth-profile from [60] and evolution of the surface elevation η as it passes over the submerged trapezoidal bar.

zone for identifying its influence on the hybrid solution. The
tests were done for LC1 ∈ [1.00m, 4.00m] corresponding to
LC1/L ∈ [0.12, 0.46], where L is the wave-length. Hence in
the coupled simulation, at zeroth time-step, the MLPG R do-
main starts from x = 39.80m, with the buffer layer CPL2 nodes
in x ∈ [39.80m, 40.00m) and the relaxation zone CPL1 nodes
x ∈ [40.00m, 40.00m+LC1]. The relaxation function C given by
Eq. (11) is defined using coefficient α = 0.29, β = 5.0. This re-
sults in a relaxation function with long tail section (near C = 0),
which is ideal for absorbing any reflected waves as per the con-
clusions in [32]. The hybrid model is executed at the time-step
of ∆t = 0.008s, resulting in a Courant number of Cou = 0.15 in
the FEBOUSS region and Cou = 0.50 in the MLPG R region.

The waves produced by the hybrid model in the MLPG R
sub-domain are compared against the results from purely
FEBOUSS and purely MLPG R simulations. The purely
MLPG R simulation was done using the same node distribu-
tion and domain characteristics as the MLPG R sub-domain of
the coupled simulation, except with the domain starting from
x = 0.00m instead of x = 39.80m. The purely MLPG R do-
main has a total length of 110m, with the a wave-maker on
the left face instead of a coupling interface. Comparisons were
done for wave elevation η at a probe at (x, y) = (50.00m, 2.00m)
obtained from each model. The difference between wave-
elevation time-series obtained from the hybrid model ηH and
purely FEBOUSS simulation ηF for a long duration is quanti-
fied using relative amplitude parameter Ar,HF and phase differ-
ence parameter Pd,HF defined as follows, similar to the work
in [30]. These values of Ar and Pd allow us to monitor the in-
fluence of changes in LC1, and further compare single coupling
interface against multiple coupling interfaces. The values of
Ar → 1 and Pd → 0 indicates perfect agreement between two
time-series.

Ar,HF =

√∑
t (ηH)2∑
t (ηF)2 , Pd,HF =

√∑
t (ηH − ηF)2∑

t (ηF)2 (12)

Further a comparison of the crest elevation values relative to
purely MLPG R simulation was quantified using error param-
eter Eη

HM,C =
|ηH,C−ηM,C |

|ηMC |
× 100 and Eη

FM,C =
|ηF,C−ηM,C |

|ηMC |
× 100,

where ηH,C , ηF,C and ηM,C are crest values from the hybrid,
FEBOUSS and purely MLPG R simulations, respectively. The
same procedure was repeated for the wave-trough. The value of

horizontal component u of velocity was measured at multiple
probes along the depth at (x, y) = (50.00m, 2.00m). This pro-
vided us with the depth-resolved profile of u from each model
at the same location. The comparison of these values under
the wave-crest was quantified against purely MLPG R solution
using error parameters Eu

HM,C and Eu
FM,C .

Eu
HM,C =

√∑
z(uH,C − uM,C)2∑

z u2
M,C

× 100,

Eu
FM,C =

√∑
z(uF,C − uM,C)2∑

z u2
M,C

× 100

(13)

Here uH,C , uF,C and uM,C are values of u from the hybrid,
FEBOUSS and MLPG R simulations, respectively. This proce-
dure was also repeated for wave-trough. Through these values
of Eη and Eu, we can quantify the difference between purely
FEBOUSS and MLPG R simulations, and further understand
its impact on the hybrid solution.

Fig. (12a) shows the comparison of the surface elevation
time-series obtained from the hybrid model using single cou-
pling interface of LC1 = 1.50m = 0.17L, against the purely
FEBOUSS simulation. This test case is labelled as L1.50R0.00
across the results. This comparison highlights the difference
between the desired result from the FEBOUSS simulation and
the obtained result from the hybrid simulation in the MLPG R
sub-domain with FEBOUSS input. The figure indicates good
agreement in phase, with marginal positive error in wave-crest
and wave-trough. This is further confirmed by a low Pd,HF =

0.0578 and marginal higher than 1 value of Ar,HF = 1.0075.
This test was repeated for various LC1, with the values of Ar

and Pd plotted in Figs. (13a) and (13b), respectively. We can
observe than the values of LC1 in the tested range have a very
limited influence on the accuracy of the result. However, LC1
was found to have an impact on the distribution of the nodes in
the relaxation zone within the MLPG R sub-domain. It should
be noted that the relaxation function C given by Eq. (11) has
dependence of ∇.C ∝ 1/LC1. Further, as discussed in the intro-
duction section 1, the flow within the relaxation zone will have
non-zero divergence, with ∇ · u⃗ = ∇C ·

(
u⃗A − u⃗B

)
, and hence

∇ · u⃗ ∝ 1/LC1. If the two models being coupled have excel-
lent agreement between their velocities, then the value of ∇ · u⃗
within the relaxation zone will be small, irrespective of ∇C.

Page 14 of 31

https://doi.org/10.1016/j.oceaneng.2022.112426


Published version doi.org/10.1016/j.oceaneng.2022.112426 Accepted manuscript, Ocean Engineering

0 1 2 3 4

t/T

-0.4

-0.2

0

0.2

0.4

0.6

/H

x = 8.00 m

0 1 2 3 4

t/T

-0.4

-0.2

0

0.2

0.4

0.6

/H

x = 15.70 m

0 1 2 3 4

t/T

-0.4

-0.2

0

0.2

0.4

0.6

/H

x = 21.52 m

0 1 2 3 4

t/T

-0.4

-0.2

0

0.2

0.4

0.6

/H

x = 22.02 m

Exp. Luth (1994) Num. FEBOUSS

Figure 9: Plots showing the comparison of surface-elevation η between the experimental measurements of [60] and converged numerical results of FEBOUSS.
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Figure 11: Schematics showing the arrangement of the FEBOUSS domain and the MLPG R domain near the single coupling interface. The schematics also show
the regions defining the relaxation zone CPL1 nodes and buffer zone CPL2 nodes. a) The side-view of the domain, additionally depicting the relaxation function C
defined by Eq. (11) with α = 0.29, β = 5.0 within the relaxation zone. b) The top-view of the domain.

For example, consider the coupling between IITM-FNPT and
MLPG R in [2] (see Table 1). However, in the presented hybrid
model, the fully resolved meshless MLPG R model and depth-
integrated meshed FEBOUSS have significant differences in
their characteristics. Therefore, a smaller LC1 will lead to larger
disturbance in particle distribution within the relaxation zone,
with a progressive concentration of the particles near the free-
surface over long duration. In the presented test case, no numer-
ical instability due to concentration of particles was observed
for 10, 000 time-steps using LC1 = 1.50m = 0.17L. It should be
noted that this numerical artefact within the relaxation zone can
be treated with periodic re-distribution of nodes without signif-
icant impact on accuracy.

Following the study on LC1, the results from L1.50R0.00 are
further scrutinised against purely MLPG R results. Fig. (14a)
shows the comparison of wave-elevation η between the three re-
sults, with zoomed-in views of the crest and the trough shown in
Figs. (14b) and (14c), respectively. The comparison of depth-
resolved profile of the horizontal velocity component u under
the wave-crest and trough is shown in Figs. (15a) and (15b),
respectively. Further, the wave elevation at crest and trough
from each model is tabulated in Table 4 with label L1.50R0.00,
along with the relative error in wave elevation and velocity pro-
file measured with respect to the purely MLPG R simulation.

We observe that both crest and trough from FEBOUSS are
lower by about 2.50% compared to the purely MLPG R re-
sult. This implies that both the models produce nearly the
same wave-height, with mid-elevation in FEBOUSS lower than
MLPG R. Further, the difference in the u profile between the
two models is only marginal 0.60% under the wave-crest, while

the profile under the wave-trough has larger deviation of 0.99%
owing to difference in its shape. These differences between
FEBOUSS and MLPG R are numerically smoothed by the re-
laxation zone. The elevation obtained from the resultant hy-
brid model has a 3.92% higher wave-crest and 3.13% higher
wave trough compared to the MLPG R solution. Thus, the
hybrid result produces nearly the same wave-height as purely
MLPG R results, with marginally higher mid-elevation. The
depth-profile of u in the hybrid model is similar to the MLPG R
results. However, we can observe a positive drift in the values
for both crest and trough by about 2.49% and 1.32%, respec-
tively. It should be noted that the velocity profile obtained from
the hybrid model does not have additional noise, unlike the re-
sults from [29] on 2D coupling of OceanWave3D and Dual-
SPHysics (see Table 1). This is primarily due to the difference
in the coupling method, where the work in [29] uses the changes
in local particle density for generation waves in DualSPHysics
from OceanWave3D input, unlike the relaxation zone approach
in the presented model. Through this example, we have demon-
strated the ability of the presented hybrid model to reproduce
Stokes-2nd order regular wave within an acceptable error range
using a single coupling interface.

4.4. Hybrid model: Two coupling interfaces

The use of single coupling interface is a relatively common
practice, where the exchange of variables between the two mod-
els happens only in a single zone. In these cases, the incoming
waves are either absorbed by a sponge layer [2, 32, 61], or they
are reflected by a wall / beach [27, 30]. The use of the sponge
layer will lead to a longer Navier-Stokes domain. On the other
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at (x, y) = (50m, 2m). a) Results from hybrid model with single coupling interface. b) Results from hybrid model with two coupling interfaces.

hand, the walls / beach condition may only be limited to run-up
studies. In order to expose structures to consistent waves over
long duration in a hybrid model, it is crucial to enable the ex-
change of variables at multiple locations through multiple cou-
pling interfaces.

Therefore, following our investigation with the single cou-
pling interface, we now use two coupling interfaces in the
MLPG R domain of the hybrid model, one along the left face
and one along the right face. This method will enable both
the generation and absorption of waves in the MLPG R sub-
domain, using the input from FEBOUSS simulation at both the
coupling interfaces.

Similar to the single interface tests, the two coupling inter-
face numerical tests are carried out for the regular wave case-N2
(see Table 2). The simulation setup is depicted in Fig. (16). The
FEBOUSS domain has the same specifics as the previous exam-
ple. The MLPG R domain now has a length of 35.20m, width
0.5m, initial depth of h = 1m with particles placed at regular
interval at initial spacing of ∆x = ∆y = ∆z = 0.05m = h/20.
It is bound by slip wall BC along the side and bottom walls,
the free-surface on the top and coupling interfaces along the
left and the right faces. This MLPG R sub-domain is po-
sitioned within the FEBOUSS domain with its left corner at
(x, y) = (39.80m, 0.75m) as shown in Fig. (16). Once again,
four layers of buffer zone CPL2 nodes are set along the left and
the right faces, with LC2 = 4∆x = 0.20m. We tested various
lengths of the relaxation zone LC1 to investigate its influence on
the results. Therefore, at zeroth time-step, the MLPG R domain
is located in x ∈ [39.80m, 75.00m], with the buffer zone CPL2
nodes in x ∈ [39.80m, 40.00m) ∪ (74.80m, 75.00m] and the

relaxation zone CPL1 nodes in x ∈ [40.00m, 40.00m + LC1] ∪
[74.80m−LC1, 74.80m]. Hence, the initial distance between the
start of the both relaxation zones is 34.80m ≈ 4L. The hybrid
model is executed at a constant time-step of ∆t = 0.008s, cor-
responding to Courant number Cou = 0.15 in the FEBOUSS
domain and Cou = 0.50 in the MLPG R domain. Similar to
section 4.3, the relaxation function C is once again defined us-
ing α = 0.29, β = 5.0 resulting in a crucial long-tail portion.

Fig. (12b) shows resultant η time-series from the MLPG R
sub-domain of the hybrid model, having two coupling inter-
faces each with LC1 = 1.50m = 0.17L, labelled as L1.50R1.50.
It is compared against purely FEBOUSS simulation. For this
case, the value of relative amplitude Ar,HF = 1.0070 is sim-
ilar to the L1.50R0.00 result. The same is observed for all
test cases with LC1 ∈ [0.50m, 4.50m] ≡ LC1/L ∈ [0.06, 0.79],
as shown in Fig. (13a), where Ar,HF is similar for both single
and two coupling interfaces. Further, the comparison of wave-
crest and trough values from the hybrid model L1.50R1.50
against the MLPG R values yields error of Eη

HM,C = 3.88% and
Eη

HM,T = 3.08%, similar to L1.50R0.00 results, as tabulated in
Table 4.

However the phase difference in L1.50R1.50 corresponds to
Pd,HF = 0.0520, which is 10% lower than the L1.50R0.00.
Similar observation is made across LC1/L values as shown in
Fig. (13b). A wave simulated by MLPG R and FEBOUSS
will have marginally different phase speeds. In case of sin-
gle coupling interface, this marginal difference is smoothed
only at the inlet, while in the case of two coupling interfaces,
this difference is corrected at the inlet and outlet, resulting in
lower phase difference with respect to FEBOUSS result. Over-
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Figure 13: Plots reporting relative error in the surface-elevation η time-series at (x, y) = (50m, 2m) obtained from hybrid model simulations with respect to
FEBOUSS simulation results. a) Plot of relative amplitude parameter Ar,HF from both single and two coupling interfaces. b) Plot of phase difference parameter
Pd,HF from both single and two coupling interfaces.

all, we still observe a limited influence of LC1 on the accu-
racy of the hybrid model result. Further, observations regard-
ing its influence on the particle concentration within the relax-
ation zone are similar to the remarks from single coupling in-
terface. Finally, the u profile from L1.50R1.50 too is quite sim-
ilar to the L1.50R00 result, with the error of Eu

HM,C = 2.59%
and Eη

HM,T = 1.34% under wave-crest and trough, respec-
tively. The plot of depth-resolved profile of velocities obtained
from L1.50R1.50 is nearly identical to the result obtained from
L1.50R0.00. Hence, it is not reported again.

Through these tests we have demonstrated the ability to gen-
erate waves in MLPG R domain using input from FEBOUSS
with acceptable error to create a hybrid model. On the other
hand, the run-time gains from the hybrid approach are signifi-
cant due to the reduction of the MLPG R domain size and rela-
tively low numerical cost of FEBOUSS. Fig. (17) contrasts the
relative size of MLPG R domain for simulation with no cou-
pling against the hybrid model with single and two coupling
interfaces. Further, the Table 5 lists the wall-clock time taken
by the simulations for modelling the same wave from still-water
to 7500 time-steps. Each simulation was executed on a Intel(R)
Xeon(R) Gold 2.50GHz CPU with 8 cores and parallel imple-
mentation using OpenMP. We observe that the hybrid simula-
tion with single (L1.50R0.00) and two (L1.50R1.50) coupling
interfaces takes 71.21% and 35.25% of the original run-time,
respectively. The gain is primarily due to the drastic reduction
of the MLPG R domain to 63.82% and 32.00% of its origi-
nal length in L1.50R0.00 and L1.50R1.50, respectively. The
time taken by FEBOUSS is nearly the same (0.9h) for both the
hybrid simulation because there is no difference in its setup.
Table 5 also presents the total time taken by the coupling algo-
rithm, including the calculation of spatial derivatives and depth-
resolved quantities in FEBOUSS, and the interpolation to the
moving MLPG R nodes in the coupling zone. The coupling
time for two coupling interfaces (0.06h) is twice the time taken
for single coupling interface (0.03h). However, crucially the
time taken by coupling is marginal for both the hybrid simula-
tions, highlighting the efficiency of the algorithms and imple-

mentation. This hybrid model thus has the potential to enable
the simulation of large domain real-world problems using par-
ticle based methods.

4.5. Hybrid model: 3D coupling

Both FEBOUSS and MLPG R have been developed for sim-
ulating waves in three-dimensional domain. Further, the Algo-
rithm 1 and Eq. (10) provide all three components of velocity
u⃗ = uî + v ĵ + wk̂ using the results from Boussinesq equation.
Therefore, in the present section, we demonstrate the ability of
Algorithm 2 for coupling the two models in 3D using a direc-
tional wave test case. We continue to test using the regular wave
defined by case-N2 (see Table 2). However, for this section the
wave-direction is prescribed as 30° with respect to the X-axis,
unlike the previous section where the wave-direction was pre-
scribed along the X-axis.

The directional wave test case is carried out for 1) investi-
gating calculation of the derivatives and cross derivatives of P
and Q during calculation of the depth-resolved quantities us-
ing Eq. (10), 2) monitoring the MLPG R particle distribution
within the relaxation zone, 3) presenting first demonstration of
directional-wave using this type of hybrid model. Appendix A
presents an example, where the issue with particle distribution
near the intersection of coupling interfaces was only evident in
case of directional test-case.

The FEBOUSS domain is a rectangular wave tank of length
200m ≈ 23L and width 16m, which is rotated anti-clockwise by
30° about the Z-axis, as shown in Fig. (18a). This allows us to
consistently generate regular waves at 30° in the FEBOUSS do-
main. It is bound by side DA with wave-making boundary con-
dition, sides AB and CD with slip-wall boundary condition, and
a sponge layer of length 3L next the side BC. The domain has a
constant still-water depth of h = 1.0m. The domain is meshed
using nodes placed at regular interval of 0.16m ≈ L/54.33, con-
nected using right-angled triangles, similar to the previous sec-
tions.

The MLPG R sub-domain is a cylinder with its axis paral-
lel to the Z-axis. This shape allows for wave-input into the
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(50m, 2m) b) Wave-elevation comparison with zoomed in view of the wave-crest. c) Wave-elevation comparison with zoomed in view of the wave-trough. Here H
is the specified wave-height and T is the wave-period.
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Figure 15: Figures showing comparison of results from purely MLPG R, purely FEBOUSS and the hybrid model for depth-resolved profile of horizontal component
u of velocity under a) wave-crest, b) wave-trough. Here h is the still-water depth. The velocity is non-dimensionalised using the absolute value of peak velocity
from Stokes-2nd order theory under the crest and trough, respectively.
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Figure 16: Schematics showing the arrangement of the FEBOUSS domain and the MLPG R domain near the two coupling interfaces. The schematics also show the
regions defining the relaxation zone CPL1 nodes and buffer zone CPL2 nodes. Further, the part a) The side-view of the domain, additionally depicting the relaxation
function C at both the coupling interfaces, with α = 0.29, β = 5.0 within the relaxation zone. b) The top-view of the domain.

Figure 17: Top view of the MLPG R domains, depicting its relative size in the simulations with and without coupling interface. a) Purely MLPG R simulation with
no coupling. b) Hybrid model with single coupling interface. c) Hybrid model with two coupling interfaces.
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Figure 18: a) Schematic showing the rectangular FEBOUSS domain rotated anti-clockwise along the Z-axis about (0m, 0m, 0m). b) The top-view of MLPG R
sub-domain at zeroth time-step, showing the CPL2 buffer zone, CPL1 relaxation zone along with the a contour plot of the relaxation function C.
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Figure 19: Schematics depicting the arrangement of FEBOUSS domain and MLPG R sub-domain for 3D coupling. a) Top-view showing part of FEBOUSS domain
around the cylindrical MLPG R sub-domain, with the axis of the cylindrical MLPG R sub-domain at XY location O(33.25m, 28.43m) at the zeroth time-step. b)
Plot showing spectral energy for various directions of propagation for the wave field obtained from purely FEBOUSS and hybrid simulations around the point O.

Figure 20: Results for wave-elevation contour obtained from the hybrid model at t = 15.67T . a) Contour plot from the 2D FEBOUSS domain, with the outline of
the MLPG R sub-domain highlighted using a white circle. b) Top view of the free-surface of the 3D MLPG R sub-domain, with contours of surface-elevation.
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Table 4: Table listing the wave elevation at wave-crest and wave-trough obtained from purely MLPG R, purely FEBOUSS and the hybrid model at a probe located
at (x, y) = (50.0m, 2.0m). The table also presents the error w.r.t MLPG R for the peaks of wave elevation and depth-resolved profile of u component of velocity at
wave-crest and wave-trough. Here H is the specified wave-height.

Peak Label L1.50R0.00 L1.50R1.50

Crest

MLPG R ηM,C/H 0.5486 0.5486

FEBOUSS ηF,C/H 0.5344 0.5344

Hybrid ηH,C/H 0.5701 0.5699

Eη
FM,C % 2.59 2.59

Eη
HM,C % 3.92 3.88

Eu
FM,C % 0.60 0.60

Eu
HM,C % 2.49 2.59

Trough

MLPG R ηM,T /H -0.4543 -0.4543

FEBOUSS ηF,T /H -0.4658 -0.4658

Hybrid ηH,T /H -0.4401 -0.4403

Eη
FM,T % 2.53 2.53

Eη
HM,T % 3.13 3.08

Eu
FM,T % 0.99 0.99

Eu
HM,C % 1.32 1.34

MLPG R sub-domain from any direction. The cylindrical do-
main has an outer diameter of 7.3m and initial depth of 1.0m,
with the free-surface initially at z = 0m and the bottom bound-
ary at z = −1m. Similar to previous sections, converged results
are obtained for the domain consisting of nodes placed at regu-
lar interval of 0.05m along the radius, circumference and depth.
The directional wave is generated in FEBOUSS and transferred
to the MLPG R sub-domain through a cylindrical shell cou-
pling interface. We use three layers of buffer zone CPL2 nodes,
defined using a cylindrical shell with inner diameter 7.0m and
outer diameter 7.3m. The relaxation zone is defined by a cylin-
drical shell with inner diameter 5.0m and outer diameter 7.0m,
thus having a thickness of 1m, following the conclusions from
section 4.3. The relaxation function is defined using Eq. (11)
with coefficients α = 0.29 and β = 5.0. Here xr = 0 cor-
responds to diameter 7.0m and xr = 1 corresponds to diam-
eter 5.0m at the zeroth time-step. Fig. (18b) shows the top-
view of the MLPG R sub-domain. It highlights the CPL1 and
CPL2 nodes of the coupling interface and presents a contour
plot of the relaxation function C. This cylindrical MLPG R sub-
domain is placed within the FEBOUSS domain, with its axis at
the location (x, y) = (33.24m, 28.43m) at the zeroth time-step,
annotated as point O in Fig. (19a). The hybrid model is ex-
ecuted at a constant time-step of ∆t = 0.008s, with Courant
number Cou = 0.15 in the FEBOUSS domain and Cou = 0.50
in the MLPG R sub-domain.

The resultant wave-elevation contours obtained from the sim-
ulation of this directional wave case in the hybrid model are
presented in Fig. (20). The elevation and depth-resolved pro-

file of velocity were measured at probes located at point O in
the purely FEBOUSS simulation and the MLPG R sub-domain
of the hybrid simulation. Fig. (21) shows a comparison be-
tween the surface-elevation time-series obtained from these two
simulations. This comparison contrasts the difference between
the desired results from FEBOUSS against the obtained re-
sult in the MLPG R sub-domain from the hybrid model with
FEBOUSS input. We observe an excellent agreement between
the two time-series. Similar to section 4.3, we quantify the dif-
ference using relative amplitude Ar,HF = 1.0029 (largely due
to higher crests) and phase-difference Pd,HF = 0.0185. Please
note that these error values are smaller compared to the results
in section 4.3. This is because, in the presented 3D coupling
setup, the coupling interface surrounds the analysis location
with a relatively closer radial distance of 2.5m, compared to the
previous section. Therefore, the relaxation zone smoothens the
marginal phase difference between FEBOUSS and MLPG R
sub-domains relatively sooner. Additional investigation was
done for determining the dominant direction of wave propaga-
tion in purely FEBOUSS domain and MLPG R sub-domain of
the hybrid simulation. This was achieved using wave-elevation
time series from a grid of probes around the point O. The direc-
tional spectrum was calculated by maximum likelihood method
using the WAFO toolbox [62]. The resultant spectral energy
S for propagation angles obtained from both the simulations is
shown in Fig. (19b). A dominant peak is observed in both the
results at 30°, further validating the propagation direction.

A comparison of the depth-resolved profile for the u and v
components of velocities obtained from the purely FEBOUSS,
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Table 5: Table listing the wall-clock run-time for purely MLPG R and the hybrid simulations, thus highlighting the numerical gains from the hybrid approach.

Label No
coupling

Hybrid
L1.50R0.00

Hybrid
L1.50R1.50

MLPG R
domain length

(m)
(%)

110.0 70.2
(63.82% of 110m)

35.2
(32.00% of 110m)

Run
time

Total (h)
(%)

A
12.54

B
8.93

(71.21% of A)

C
4.42

(35.25% of A)

MLPG R (h)
(%)

12.54
(100% of A)

7.98
(89.44% of B)

3.50
(79.20% of C)

FEBOUSS (h)
(%)

-
-

0.91
(10.19% of B)

0.86
(19.45% of C)

Coupling (h)
(%)

-
-

0.03
(0.38% of B)

0.06
(1.35% of C)
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Figure 21: Wave-elevation time series obtained at point O from purely FEBOUSS and hybrid simulations for the directional wave case with 3D coupling.

purely MLPG R and the hybrid simulation is shown in
Fig. (22). The error in the result from hybrid model is quan-
tified against the purely MLPG R result as Eu

HM,C = 2.54%
and Ev

HM,C = 1.95% (see section 4.3 for definition of the er-
rors). We observe a positive drift in both velocity components
from the coupled simulation, similar to the previous conclu-
sions. However the error for both the components is within
acceptable range.

4.6. Hybrid model: 3D coupling with structure
The previous sections demonstrate and provide an improved

understanding of 3D coupling between the mesh based Boussi-
nesq equation model and the particle based Navier-Stokes
model. The present section builds upon these procedures for
simulating interaction of regular waves with a fixed cylinder
using the hybrid model. We consider a regular wave test case
from a series of experiments from [63, 64] on interaction of
fixed and moving cylinder with regular and focusing waves.
The experimental setup consists of a cylinder of diameter 0.22m
suspended from a movable trolley. The experiments measure
wave-elevation at multiple probes, including some in the vicin-
ity of the cylinder. They also report pressure at various points
on the cylinder, including the stagnation point at various depths.
The complete details for the setup are given in [63] with further
interpretation of the results in [64].

The simulations are carried out for a regular wave with time
period T = 2.0s, wave-height H = 0.10m in water depth of
h = 0.7m. The coefficients corresponding to this wave are
listed in Table 2 labelled as case-E2, with the Ursell number
of Ur = 6.23 indicating a highly asymmetric wave near the
limits of Stokes-2nd order theory as shown in the wave-theory
regime plot Fig. (3). Table 6 lists the position of the cylinder
and probes in the experiment wave-tank, assuming the origin at
the centre of the cylinder, with the X-axis along the length of the
wave-tank and z = 0 at still-water level. The wave propagates
at 0° w.r.t X-axis along the length of the wave-tank. The wave-
probe WP5 is placed just upwind of the cylinder to confirm the
wave impacting the cylinder. The pressure probes PP2-4 are lo-
cated at various depths on the stagnation point, with PP4 located
above the initial water level and hence will undergo wetting and
drying. Finally, pressure probes PP6 and PP8 are placed 20°
and 180° from the stagnation point at a submerged depth.

In the hybrid model, instead of simulating the wave along
the X-axis, we prescribe the wave-direction as 30° w.r.t the X-
axis. Once again, similar to section 4.5, this is done to involve
both u and v components of velocity in the coupling algorithm
and demonstrate the 3D coupling capabilities of the interface.
Given that a vertical cylinder is symmetric about its axis, we can
correlate the experimental results for 0° wave-direction with
the hybrid simulation results for 30° wave-direction by rotating
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Figure 22: Plots for depth-resolved profile of the velocity components obtained from purely FEBOUSS, purely MLPG R and hybrid simulations, under the wave-
crest at point O. The velocity values are scaled against the maximum of Stokes-2nd order results. Here h is the still-water depth. a) u velocity component along
X-axis. b) v velocity component along Y-axis.

the position of the probes in the simulation setup by 30° anti-
clockwise. Table 6 thus lists the positions of the same probes in
the MLPG R sub-domain of the hybrid simulation, obtained by
rotating the experimental locations anti-clockwise by 30° about
the Z-axis at the origin.

The MLPG R sub-domain is a cylinder with its axis along the
Z-axis, centred at (x, y) = (0m, 0m). It has an outer-diameter
5.4m and initial depth of 0.7m, with the free-surface initially at
z = 0m and bottom boundary at z = −0.7m. The MLPG R sub-
domain consists of a vertical cylindrical structure of diameter
0.22m centred at (x, y) = (0m, 0m), having a height 1.0m be-
tween z = −0.7m and z = 0.3m. The fluid domain is bound by
the free-surface on the top, and slip walls at the bottom and at
the vertical cylindrical structure. The waves are generated and
absorbed in the MLPG R sub-domain using a cylindrical shell
coupling interface with FEBOUSS input, similar to Fig. (18b).
Here the buffer zone nodes are places between diameter 5.40m
and 4.98m, and a 0.7m wide relaxation zone between diame-
ter 4.98m and 3.58m. The relaxation function is defined by
Eq. (11) with α = 0.29, β = 5.0, where xr = 0 corresponds
to diameter 4.98m and xr = 1 corresponds to diameter 3.58m.
Converged results were obtained using particles distributed at
a regular interval of 0.035m = h/20. Fig. (23a) shows the
top view of the MLPG R sub-domain containing the cylindrical
structure in the centre, with depiction of buffer zone and relax-
ation zone along with contour plot of relaxation function at the
zeroth time-step. It also highlights the position of the MLPG R
sub-domain surrounded by the rectangular FEBOUSS domain
for wave generation. Further, Fig. (23a) and Fig. (23b) show the
position of the aforementioned wave probe relative to the cylin-
der and the pressure-probes on the cylinder within the MLPG R
sub-domain.

The FEBOUSS domain is rectangular tank of length 90m ≈
19.5L and width 10m in the XY plane which is rotated anti-
clockwise about the Z-axis by 30° for consistently generating

directional waves. It encompasses the MLPG R sub-domain,
with the 4 corners of the rectangular domain located as shown
in Fig. (23)a. The domain has a constant depth of h = 0.7m
and is bounded by a wave-maker at boundary DA, slip walls
at boundaries AB and CD and a 2.5L long sponge layer adja-
cent to the boundary BC. Using the conclusions from section
4.1, it is meshed using regularly spaced points at an interval of
0.08m = L/57.80, connected by right angled triangles. The hy-
brid model is executed at a constant time-step of ∆t = 0.00625s,
resulting in Courant number Cou = 0.21 in the FEBOUSS do-
main and Cou = 0.47 in the MLPG R sub-domain.

This setup for the hybrid simulation generates successive
directional regular waves in the MLPG R sub-domain using
the velocity input from the FEBOUSS simulation. Fig. (24a)
presents a contour plot of the surface elevation in the top-view
of the MLPG R sub-domain, showcasing the interaction of a
wave-crest with the vertical cylinder at t = 10.5T . Fig. (24b)
presents a contour plot of the magnitude of the 3D velocity vec-
tor at the free-surface using a top-view of the MLPG R domain
at the same time-instance. The corresponding velocity vector
plot at the free-surface in the XY plane is shown in Fig. (25a),
while Fig. (25b) shows the same for particles in a slice along the
mid-line of the cylinder in the XZ plane. These figures show a
snapshot of the 3D flow around the cylinder, with the wave-crest
located immediately behind the cylinder. As the wave-crest ap-
proaches the cylinder, the flow would run-up vertically along
the stagnation point on the cylinder, at positions corresponding
to pressure probes PP2-4. The presented time-instance is the
run-down of this flow with the receding wave-crest as seen in
Fig. (25b). At this stage, the horizontal components of particle
velocities will still be predominantly aligned along the wave-
direction. However, with the presence of the cylinder, the flow
has to navigate around the structure, accelerating to maximum
velocity and finally converging back behind the cylinder, as
shown in Fig. (25a). However, due to inertia, a local low veloc-
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Figure 23: a) Schematic of the MLPG R sub-domain located within the rectangular FEBOUSS domain. The MLPG R domain is shown with the vertical cylindrical
structure at its centre, the buffer zone CPL2 and relaxation zone CPL1 of the coupling interface for wave generation and absorption and location of WP5. b)
Schematics for position of the pressure probes on the vertical cylindrical structure within the MLPG R sub-domain.

Figure 24: Top-view of the free-surface of MLPG R sub-domain showing contour plots for interaction of a wave-crest with the vertical cylindrical structure. a)
Contour plot of surface-elevation η. b) Contour plot of magnitude of 3D velocity vector at the moving free-surface. The pink lines indicate the region of the
relaxation zone.

Figure 25: Quiver plot show the flow velocity vector in the vicinity of the cylinder. a) Top view of the moving free-surface. b) Side view of a slice of particles along
the mid-line of the cylinder.
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Table 6: Table listing the positions of the cylinder, wave-probe and pressure probe in the experimental setup for wave-direction 0° and the hybrid simulation setup
for the wave-direction 30°.

Label Experiment
Wave Direction 0°

Simulation
Wave Direction 30° Relative error

X (m) Y (m) Z (m) X (m) Y (m) Z (m) Ar,HE Ar,HM

Cylinder
Centre 0.0 0.0 - 0.0 0.0 -

WP5 -0.570 0.260 - -0.624 -0.060 -

PP2 -0.110 0.0 -0.185 -0.096 -0.056 -0.185 1.069 1.020

PP3 -0.110 0.0 -0.085 -0.096 -0.056 -0.085 1.071 1.021

PP4 -0.110 0.0 0.015 -0.096 -0.056 0.015 1.041 1.008

PP6 -0.104 -0.038 -0.085 -0.071 -0.085 -0.085 1.066 1.022

PP8 0.110 0.0 -0.085 -0.096 -0.056 -0.085 0.923 1.039

ity region is observed behind the cylinder, as seen in the velocity
contour plot Fig. (24b), despite the presence of the wave-crest
at that location.

The surface elevation at WP5 and pressure time-series at
PP2-8 obtained from the hybrid simulation are compared
against experimental results reported in [63, 64] and numer-
ical results from purely MLPG R simulation reported in [2].
The comparison is further quantified between time interval
t ∈ [11, 13]T using the relative amplitude parameter Ar. Here
Ar,HM is the error in pressure pH from hybrid model with re-
spect to purely MLPG result pM , while Ar,HE is the comparison
against the experimental pressure pE .

Ar,HM =

√∑
t (pH)2∑
t (pM)2 , Ar,HE =

√∑
t (pH)2∑
t (pE)2 (14)

A value of Ar → 1 indicates a perfect agreement between
the two time-series, while a Ar > 1 and Ar < 1 indicate
over-prediction and under-prediction of magnitudes, respec-
tively. Fig. (26) shows the comparison between the three re-
sults for every probe. The surface elevation results at WP5
shows an excellent match between the three time-series. The
wave-height from the hybrid model is 1.26% higher than the
experiment and 0.94% higher than purely MLPG R result. The
pressure from the hybrid model is marginally higher than purely
MLPG R results for probes PP2, PP3, PP4 and PP6, each hav-
ing Ar,HM ≈ 1.020. The majority of this error is due to the
difference in their profiles between the trough and the zero up-
crossing. The only major difference between the two numerical
results is at PP8 at the rear stagnation point, where the magni-
tude of trough pressure is higher in the hybrid result by 7.93%
compared to the purely MLPG R result. We can further observe
a reasonable comparison of pressure time-series against the ex-
periment, with the hybrid simulation producing higher peaks

for the upwind probes PP2-4 and troughs with lower magni-
tude for the downwind probe PP8. However, the same trend
is also observed when comparing the purely MLPG R results
against the experiments, which indicates that these errors are
not originating from the coupling interface. This example thus
demonstrates the ability of the hybrid model to produce results
reasonably similar to purely MLPG R simulation for the pre-
sented case of wave-structure interaction. Fig. (27) presents
a 3D rendition of the simulated case, showcasing the final ar-
rangement and result of hybrid model, with the FEBOUSS do-
main surrounding the local MLPG R sub-domain.

5. Conclusion

The manuscript presented procedures and their applica-
tion for one-way coupling of mesh-based Boussinesq equa-
tion model with particle-based Navier-Stokes model in 3D.
The finite-element model for depth-integrated form of Boussi-
nesq equations can model 3D wave-transformation using a 2D
surface mesh, thus allowing analysis over large domains. It
is referred to as FEBOUSS in the manuscript. The Navier-
Stokes equations for incompressible flow were modelled us-
ing the MLPG R method following the projection scheme. The
key differentiating feature for this method is the solution of the
pressure Poisson equation in weak-form using Rankine source
test function, which crucially eliminates derivatives of unknown
variables.

The paper discusses two crucial aspects of one-way coupling
between these two numerical models, 1) calculation of depth-
resolved quantities in FEBOUSS, 2) formulation of coupling
interface in the MLPG R domain. The algorithm for calcula-
tion of depth-resolved quantities from the depth-integrated ve-
locities of FEBOUSS was presented, where the spatial deriva-
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Figure 26: Plots for time-series of surface elevation at WP5 and pressure at PP2-8, obtained from experimental results of [63], numerical results from purely
MLPG R model of [2] and numerical results from the presented hybrid model.

tives at the mesh nodes were evaluated using a mesh-less ap-
proach. The algorithm was tested for various regular waves,
ranging from shallow to intermediate depths within the Stokes-
2nd order theory regime and its comparison against theory and
other numerical models was presented. An excellent agree-
ment for the surface-elevation from FEBOUSS is reported for
all tested cases. Among the depth resolved quantities, an agree-
able comparison for the velocities is observed, with increasing
error in the depth-resolved profile for deeper waves. This is
primarily due to the error in the perturbation method based ex-
pression for the velocities. However, the results obtained for
depth-resolved pressure from FEBOUSS were relatively poor,
primarily due to the requirement of time-derivative. A further
validation was carried against experimental measurements for
wave-transformation over a submerged bar. The paper reports a
fair comparison for the horizontal component of velocity under
the wave crest and trough against the experimental results. In
contrast with a finite-difference model, FEBOUSS did not re-
quire additional smoothing of the spatial derivatives, resulting
in better comparison of the depth-resolved velocities.

The coupling interface in MLPG R domain was imple-
mented using a moving relaxation zone and a detailed discus-

sion on its implementation was presented. Test cases with sin-
gle coupling interface for wave generation and two coupling
interfaces for wave generation and absorption were presented,
with further investigation of the size of the relaxation zone. The
results from hybrid model produces the desired wave-height
with error within 1%, but has a higher peak of at-most 3.9%
when compared with purely MLPG R solution. Similarly, the
velocity profile under a wave-crest from the hybrid result is
over-estimated by 2.6% for the tested cases. The length of the
relaxation zone is reported to have minimal influence on the
result. However, it is found to impact the distribution of the
Lagrangian particle within the relaxation zone due to the diver-
gent flow within this region. The hybrid model for these tests
is reported to take 35.3% of the computation time compared to
purely MLPG R simulation.

The coupling capability for 3D cases is demonstrated using
a direction wave case. The MLPG R sub-domain within the
hybrid model initially has a cylindrical shape, with a cylindri-
cal shell coupling interface surrounding the region of interest.
The results from the hybrid model are once again reported to
have a fair comparison against purely MLPG R solution, with
2−3% over-prediction of peak elevation and horizontal compo-
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Figure 27: A 3D rendition of the hybrid model, showing the transparent FEBOUSS domain with contours of surface elevation surrounding the 3D MLPG R domain
with contours of magnitude of velocity.

nents of velocity along X and Y axes. Finally, the interaction of
a vertical cylinder with a directional regular wave is simulated
using the hybrid model in 3D. The results for wave and pressure
probes are reported to have excellent agreement with purely
MLPG R simulation, with marginal over-prediction of peaks
for upwind probes and 7.93% over-prediction of trough mag-
nitude at the downwind probe. Due to the weakly-dispersive
FEBOUSS, the presented hybrid model will be limited to
coastal and near-shore applications. However, the coupling al-
gorithm and analysis presented in this manuscript form the ba-
sis for coupling particle-based Navier-Stokes models with im-
proved Boussinesq-type models for deep-water applications.

The presented hybrid model thus can enable analysis of large
domain problems, with local particle-based sub-domains in re-
gions around structures. It should be noted that hybrid models
are not developed only for improving computational efficiency.
They also allow exposing structures to realistic waves that have
transformed over various idiosyncrasies of a coastal region.
This manuscript presented regular-wave test cases to study the
accuracy and robustness of the coupled solution. However, the
true capabilities of this hybrid model will be demonstrated in
our future work through multi-directional and irregular waves.
Additional research will be conducted to study the influence
of the internal MLPG R domain size on the hybrid solution in
presence of complex structures and for various wave character-
istics. This hybrid model also reduces the number of nodes in
the MLPG R domain. This can potentially allow use of coarser
distribution within MLPG R domain due to reduction in accu-
mulated error. These aspects of the hybrid model will require
further investigation. The presented 3D hybrid model sets up
the basis for such future research.
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source solver for nonlinear waves in open ocean based on High-Order
Spectral method, Computer Physics Communications 203 (2016) 245–
254. doi:https://doi.org/10.1016/j.cpc.2016.02.017.

[13] J. Wang, Q. Ma, S. Yan, A fully nonlinear numerical method for modeling
wave–current interactions, Journal of Computational Physics 369 (2018)
173–190. doi:10.1016/j.jcp.2018.04.057.

[14] L. Chen, J. Zang, A. Hillis, G. Morgan, A. Plummer, Numerical investiga-
tion of wave–structure interaction using OpenFOAM, Ocean Engineering
88 (2014) 91–109. doi:https://doi.org/10.1016/j.oceaneng.

2014.06.003.
[15] Z. Xie, T. Stoesser, S. Yan, Q. Ma, P. Lin, A cartesian cut-cell based

multiphase flow model for large-eddy simulation of three-dimensional
wave-structure interaction, Computers & Fluids 213 (2020) 104747. doi:
https://doi.org/10.1016/j.compfluid.2020.104747.

[16] A. Christou, T. Stoesser, Z. Xie, A large-eddy-simulation-based numeri-
cal wave tank for three-dimensional wave-structure interaction, Comput-
ers & Fluids 231 (2021) 105179. doi:https://doi.org/10.1016/j.
compfluid.2021.105179.

[17] J. Monaghan, Simulating free surface flows with SPH, Journal of Compu-
tational Physics 110 (2) (1994) 399–406. arXiv:arXiv:1011.1669v3,
doi:10.1006/jcph.1994.1034.

[18] A. Crespo, J. Domı́nguez, B. Rogers, M. Gómez-Gesteira, S. Longshaw,
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Appendix A. Rectangular shell coupling interface

The 3D coupling interface can be implemented either using
a cylindrical or rectangular shell, as shown in Fig. (2). The
results through a cylindrical shell implementation were shown
in sections 4.5 and 4.6. A similar investigation was also carried
out using rectangular shell coupling interface. The test case
set-up is nearly identical to section 4.5, where the hybrid model
simulates the regular wave defined by case-N2 (see Table 2),
propagating at an angle of 30° w.r.t to the X-axis. In this test,
the cylindrical MLPG R sub-domain with a cuboidal MLPG R
sub-domain having initial dimensions 7.3m × 7.3m × 1.0m is
investigated. The particle are initially placed at an interval of
0.05m.

Here the coupling interface is built with buffer layers in a
rectangular shell of thickness 0.15m, and relaxation zone of
thickness 1m, as shown in the contour plot of the top view of
MLPG R sub-domain, Fig. (A.28a). The resultant simulation of
this case using the hybrid model leads to a failure due to poor
distribution of particles at the top right corner of the MLPG R
domain, as shown in the top view in Fig. (A.28b).

The cause of the failure was investigated by measuring relax-
ation function C and it’s gradient ∇C = ∂C

∂x î+ ∂C
∂y ĵ along two line

sections, as highlighted in Fig. (A.28a). The line-section L1 is
located along the mid-line of the domain, in a region without
intersection of coupling interfaces. On the other hand, line-
section L2 is located in the region with intersection of coupling
interfaces. Fig. (A.29) presents the plots of C and ∇C along
these line-sections. It has been observed that for L2, the ∇C is
discontinuous at the intersection of the two coupling interfaces.
This discontinuity adversely impacts the ∇ · u⃗ at these regions.
Further, the failure at top-right corner is due to the wave propa-
gating at an angle of 30° w.r.t X-axis. Therefore, this top-right
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Figure A.28: Top view of the MLPG R sub-domain. a) Contour plot of relaxation function C, with the highlighted line-section L1 and L2 where the plots of C and
∇C are reported in Fig. (A.29). b) Contour plot of surface-elevation η, showing the cause of simulation failure due to particle disturbance at top right corner.

Figure A.29: Plots of relaxation function C and it’s derivatives C x = ∂C
∂x and C y = ∂C

∂y along line-sections L1 and L2, highlighting the discontinuous ∇C on L2.

corner location is downstream of the incoming wave where the
difference in the velocities from the two models (u⃗F − u⃗M) will
be most dominant. The issue can be resolved by smoothing the
intersection of the coupling interface using rounded corners, or
by eliminating corner through cylindrical or ellipsoidal shells.
The later was adopted in this thesis due to the robustness and
applicability for wide variety of problems.
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